GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Tian, Ping  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 1
    In: Agronomy, MDPI AG, Vol. 13, No. 2 ( 2023-01-31), p. 426-
    Abstract: High grain yields of rice (Oryza sativa) under dry cultivation are primarily obtained through high levels of nitrogen (N) input. However, excessive inputs of N increase the risk of lodging. This study aimed to clarify the effect of N application rates on crop morphology, mechanical mechanisms of the stem, and chemical components in the basal stems of rice and their underlying mechanism in association with lodging resistance under dry cultivation. In this study, field experiments on rice were conducted under dry cultivation in early May to early October 2019 and 2020. Six rates of N applied at 0, 70, 140, 210, 280 and 350 kg ha−1 were set at a sowing rate of 150 kg ha−1 with Suijing 18 as the test material. The increased risk of lodging represented by lodging index (LI) and lodging rate with increasing N application was observed under both growing seasons. The plant height, basal internode length, particularly the second internode, and center of gravity height, which positively correlated with the LI, increased significantly with the increase in N application rates. In contrast, internode fullness and carbohydrate content of the basal second (S2) internode, which negatively correlated with LI, decreased significantly with increasing N application rates. A quadratic regression model between N application rates and grain yield showed that better grain yield could be achieved under an N application rate ranging from 210 to 228 kg ha−1. Therefore, the N application rate of (i.e., 210–228 kg N ha−1) could be recommended for the Suijing18 variety under dry cultivation in central Jilin Province for achieving high grain yield and great lodging resistance.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Genes Vol. 14, No. 8 ( 2023-07-29), p. 1556-
    In: Genes, MDPI AG, Vol. 14, No. 8 ( 2023-07-29), p. 1556-
    Abstract: Salt stress is an important environmental factor affecting crop growth and development. One of the important ways to improve the salt tolerance of rice is to identify new salt-tolerance genes, reveal possible mechanisms, and apply them to the creation of new germplasm and the breeding of new varieties. In this study, the salt-sensitive japonica variety Tong 35 (T35) and salt-tolerant japonica variety Ji Nongda 709 (JND709) were used. Salt stress treatment with a 150 mmol/L NaCl solution (the control group was tested without salt stress treatment simultaneously) was continued until the test material was collected after the rice germination period. Twelve cDNA libraries were constructed, and 5 comparator groups were established for transcriptome sequencing. On average, 9.57G of raw sequencing data were generated per sample, with alignment to the reference genome above 96.88% and alignment to guanine-cytosine (GC) content above 53.86%. A total of 16,829 differentially expressed genes were present in the five comparison groups, of which 2390 genes were specifically expressed in T35 (category 1), 3306 genes were specifically expressed in JND709 (category 2), and 1708 genes were differentially expressed in both breeds (category 3). Differentially expressed genes were subjected to gene ontology (GO), functional enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, which revealed that these genes belonged to three main classes: molecular function, cellular components, and biological processes. KEGG pathway analysis showed that the significantly enriched pathways for these differentially expressed genes included phenylpropane biosynthesis, phytohormone signaling, and the interaction of plants with pathogens. In this study, we provided a reference for studying the molecular mechanism underlying salt tolerance during germination.
    Type of Medium: Online Resource
    ISSN: 2073-4425
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527218-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 12, No. 11 ( 2022-11-15), p. 2849-
    Abstract: Drought is a serious factor limiting rice production, and it leads to huge economic losses. Considering the current and projected global food demand, increasing productivity of drought-prone crops has become critical. In order to achieve the production target, rice drought-tolerant germplasm resources are an important prerequisite for the development of water-saving cultivation. Through multi-indicator measurement, the stress effect of drought on rice was clarified and a preliminary drought resistance identification index system was established based on the response of plant the germination, seedling and adult stages of rice and materials suitable for dry cultivation were screened. The results showed that relative root length, relative root weight and relative shoot weight were most affected by drought stress at the germination stage, while root length and root dry weight were positively correlated with the drought survival proportion at the seedling stage; high net photosynthetic rates and antioxidant enzyme activities are maintained in the late period in strongly drought-tolerant varieties. In this experiment, two drought-resistant varieties were screened, there was a high consistency in the screening of drought-tolerant varieties at the germination and seedling stages, with their joint screening showing the same performance as at the adult stage. The drought-resistant varieties at the adult stage can promote seed filling and ensure group yield by prolonging photosynthesis time and enhancing antioxidant enzyme activity, which can provide theoretical support and material basis for future variety screening and evaluation, as well as rice dry-crop cultivation.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...