GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Thiel, Volker  (1)
  • 2020-2024  (1)
  • 2022  (1)
Material
Person/Organisation
Language
Years
  • 2020-2024  (1)
Year
  • 2022  (1)
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 16 ( 2022-04-19)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 16 ( 2022-04-19)
    Abstract: Long chain 1,13- and 1,15-diols are lipids which are omnipresent in marine environments, and the Long chain Diol Index (LDI), based on their distributions, has previously been introduced as a proxy for sea surface temperature. The main biological sources for long chain 1,13- and 1,15-diols have remained unknown, but our combined lipid and 23S ribosomal RNA (23S rRNA) analyses on suspended particulate matter from the Mediterranean Sea demonstrate that these lipids are produced by a marine eustigmatophyte group that originated before the currently known eustigmatophytes diversified. The 18S rRNA data confirm the existence of early-branching marine eustigmatophytes, which occur at a global scale. Differences between LDI records and other paleotemperature proxies are generally attributed to differences between the seasons in which the proxy-related organisms occur. Our results, combined with available LDI data from surface sediments, indicate that the LDI primarily registers temperatures from the warmest month when mixed-layer depths, salinity, and nutrient concentrations are low. The LDI may not be applicable in areas where Proboscia diatoms contribute 1,13-diols, but this can be recognized by enhanced contributions of C 28 1,12 diol. Freshwater input may also affect the correlation between temperature and the LDI, but relative C 32 1,15-diol abundances help to identify and correct for these effects. When taking those factors into account, the calibration error of the LDI is 2.4 °C. As a well-defined proxy for temperatures of the warmest seasons, the LDI can unlock important and previously inaccessible paleoclimate information and will thereby substantially improve our understanding of past climate conditions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...