GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    In: Journal of Clinical Medicine, MDPI AG, Vol. 10, No. 6 ( 2021-03-10), p. 1152-
    Kurzfassung: Removal of microbes is imperative during endodontic therapy. Due to their antimicrobial property, silver nanoparticles have been used for endodontic irrigation of the root canals. The objective of the present study was to provide a qualitative analysis of the published literature assessing silver nanoparticles as root canal irrigants. A search of PubMed, SCOPUS, Web of Science, and Embase databases was done without any time restriction. Articles published in English were included. Data were extracted and the risk of bias was assessed. Of the 154 studies identified, after screening according to the inclusion criteria, five in vitro studies were included. The results indicate that silver nanoparticles have an anti-microbial effect to varying degrees depending on certain factors. Within the limitations of the present studies that have a moderate to low risk of bias, an antimicrobial effect of silver nanoparticles is observed. Silver nanoparticles have the potential to be used as endodontic irrigants, although their efficacy depends on particle size and the duration of contact which require further investigation.
    Materialart: Online-Ressource
    ISSN: 2077-0383
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662592-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 7 ( 2021-06-22), p. 589-
    Kurzfassung: Stem cells from human exfoliated deciduous teeth (SHEDs) are considered a type of mesenchymal stem cells (MSCs) because of their unique origin from the neural crest. SHEDs can self-renewal and multi-lineage differentiation with the ability to differentiate into odontoblasts, osteoblast, chondrocytes, neuronal cells, hepatocytes, adipocytes, etc. They are emerging as an ideal source of MSCs because of their easy availability and extraordinary cell number. Ascorbic acid, or vitamin C, has many cell-based applications, such as bone regeneration, osteoblastic differentiation, or extracellular matrix production. It also impacts stem cell plasticity and the ability to sustain pluripotent activity. In this study, we evaluate the effects of ascorbic acid on stemness, paracrine secretion, and differentiation into osteoblast, chondrocytes, and adipocytes. SHEDs displayed enhanced multifaceted activity, which may have applications in regenerative therapy.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 6 ( 2021-05-31), p. 491-
    Kurzfassung: Background: Stem cell therapy has become an advanced and state-of-the-art procedure to regenerate lost tissues of the human body. Cartilage repair is a challenging task in which stem cells find potential application. One of the important biologic modifiers that can cause chondrogenic differentiation of stem cells is taurine. However, taurine has not been investigated for its effects on dental pulp derived stem cell (DPSC) chondrogenic differentiation. Objective: The objective of the study was to investigate if taurine administration to DPSCs heralds chondrogenic differentiation as ascertained by expression of SOX9, COL2A1, ACAN, ELN, and COMP. The study also investigated if the differentiated cells synthesized glycosaminoglycans, a marker of cartilage formation. The study also aimed to assess proliferative activity of the cells after taurine administration by measuring the hTERT gene and protein expression. Materials and methods: DPSCs were obtained from a molecular biology laboratory and characterization of stem cell markers was done by flow cytometry. The cells were subjected to a MTT assay using various concentrations of taurine. Following this, hTERT gene and protein estimation was done in the control, telomerase inhibitor treated DPSC (TI-III), 10 μM taurine treated DPSC, and TI-III + 10 μM taurine treated DPSCs. A polymerase chain reaction was done to assess gene expression of SOX9, COL2A1, ACAN, ELN, and COMP genes and glycosaminoglycans were estimated in control cells, Induced DPSCs, induced and TI-III treated DPSCs, and 10 μM taurine treated DPSCs. Results: DPSCs expressed CD73, CD90, and CD105 and did not express CD34, CD45, and HLA-DR, which demonstrated that they were mesenchymal stem cells. The MTT assay revealed that various concentrations of taurine did not affect the cell viability of DPSCs. A concentration of 10 μM of taurine was used for further assays. With regard to the hTERT gene and protein expression, the taurine treated cells expressed the highest levels that were statistically significant compared to the other groups. Taurine was also found to restore hTERT expression in telomerase inhibitor treated cells. With regard to chondrogenesis related genes, taurine administration significantly increased the expression of SOX9, COL2A1, ACAN, and ELN genes in DPSCs and caused a significant increase in glycosaminoglycan production by the cells. Conclusions: Taurine can be regarded a biologic modifier that can significantly augment chondrogenic differentiation of DPSCs and can find potential applications in regenerative medicine in the area of cartilage regeneration.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    In: Diagnostics, MDPI AG, Vol. 11, No. 7 ( 2021-07-03), p. 1208-
    Kurzfassung: Background: Ultrasonography is a non-invasive method of diagnosing periapical lesions while radiologic methods are more common. Periapical lesions due to endodontic infection are one of the most common causes of periapical radiolucency that need to be distinguished to help determine the course of treatment. This review aimed to examine the accuracy of ultrasound and compare it to radiographs in distinguishing these lesions in vivo. Methods: This review process followed the PRISMA guidelines. A literature search of databases (PubMed, Scopus, Embase, and Web of Science) was conducted without any restrictions on time. Articles available in English were included. The selection was done according to the inclusion and exclusion criteria. The QUADAS-2 tool was used to assess the quality of the studies. Results: The search provided a total of 87 articles, out of which, five were selected for the final review. In all the studies, ultrasound had higher accuracy in distinguishing periapical lesions. All the studies indicated a risk of bias, especially in patient selection. Conclusion: Within limitations, the study indicates that ultrasound is a better diagnostic tool to distinguish periapical lesions compared to radiographs but further studies with well-designed, rigorous protocols and low risk of bias are needed to provide stronger evidence.
    Materialart: Online-Ressource
    ISSN: 2075-4418
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662336-5
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    In: Applied Sciences, MDPI AG, Vol. 11, No. 7 ( 2021-03-29), p. 3045-
    Kurzfassung: Dental pulp-capping is done to preserve vital teeth when the pulp is exposed due to caries, trauma or instrumentation. Various materials are used as pulp-capping agents. The introduction of newer materials requires scientific studies to assess their clinical efficacy. The study was designed as a split-mouth randomized analysis of four pulp-capping agents (calcium hydroxide, mineral trioxide aggregate (MTA), Biodentine and EndoSequence root repair material (ERRM)). Based on selection criteria, 15 orthodontic patients requiring the extraction of four premolars (60 teeth total) were included in the study. After pulp-capping, the teeth were extracted after 8 weeks. We analyzed the extracted teeth using cone-beam computed tomography (CBCT) and histological sections to determine the quality of the dentinal bridge and the pulpal response. Ordinal scores were given based on the completeness of the dentinal bridge, the type of bridge and the degree of pulpal inflammation. Results were analyzed using a Kruskal–Wallis test (p 〈 0.05) with post hoc Conover values being used when applicable. All four pulp-capping materials elicited dentinal bridge formation (60/60). MTA had the highest scores (10/15) in dentinal bridge formation followed by ERRM (8/15). Both materials showed more samples with complete dentinal bridges (9/15 each) and a favorable pulpal response (15/15). Teeth capped with calcium hydroxide showed more cases of incomplete bridge formation (9/15) and pulpal inflammation. These differences in dentinal bridge formation and pulpal inflammation were statistically significant (p 0.001 and p 0.00005, respectively), with post hoc tests revealing no significant differences between MTA and ERRM (p 0.49 and p 0.71, respectively). MTA and ERRM performed better than the other pulp-capping materials but did not differ significantly from each other. The individual preference for a pulp-capping material may be based on clinical efficacy and handling characteristics.
    Materialart: Online-Ressource
    ISSN: 2076-3417
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2704225-X
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    In: Materials, MDPI AG, Vol. 14, No. 14 ( 2021-07-18), p. 4013-
    Kurzfassung: To prevent re-infection and provide a hermetic seal of the root canal system, an endodontist must aim to produce a void-free obturation. This review aimed to compare the completeness of root canal obturation between the two most prevalent methods—cold lateral condensation and warm gutta-percha techniques—using micro-CT (PROSPERO reg no. 249815). Materials and Methods: A search of Scopus, Embase, PubMed (Medline via PubMed), and Web of Science databases was done without any time restriction according to the PRISMA protocol. Articles that compared both techniques and were published in English were included. Data was extracted and the risk of bias was assessed using an adapted tool based on previous studies. Results: A total of 141 studies were identified by the search. Following the screening and selection of articles, 9 studies were included for review. Data was extracted manually and tabulated. Most studies had a moderate risk of bias. None determined operator skill in both methods before comparison. The data extracted from the included studies suggests that both techniques produce voids in the obturation. The thermoplasticized gutta-percha techniques may result in fewer voids compared to cold lateral condensation. Conclusion: Considering the limitations of the included studies, it was concluded that neither technique could completely obturate the root canal. Thermoplasticized gutta-percha techniques showed better outcomes despite a possible learning bias in favor of cold lateral condensation. Establishing operator skills before comparison may help reduce this bias.
    Materialart: Online-Ressource
    ISSN: 1996-1944
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2487261-1
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 4 ( 2021-03-30), p. 247-
    Kurzfassung: The action of stem cells is mediated by their paracrine secretions which comprise the secretory profile. Various approaches can be used to modify the secretory profile of stem cells. Creating a hypoxic environment is one method. The present study aims to demonstrate the influence of CoCl2 in generating hypoxic conditions in a dental pulp stem cell (DPSCs) culture, and the effect of this environment on their secretory profile. DPSCs that were isolated from human permanent teeth were characterized and treated with different concentrations of CoCl2 to assess their viability by an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and proliferation by a cell counting kit (CCK)-8 assay. The gene expression level of hypoxia-inducible factor 1-alpha (HIF-1α) was analyzed by quantitative real time polymerase chain reaction (qRT-PCR) to demonstrate a hypoxic environment. Comparative evaluation of the growth factors and cytokines were done by cytometric bead array. Gene expression levels of transcription factors OCT4 and SOX2 were analyzed by qRT-PCR to understand the effect of CoCl2 on stemness in DPSCs. DPSCs were positive for MSC-specific markers. Doses of CoCl2, up to 20 µM, did not negatively affect cell viability; in low doses (5 µM), it promoted cell survival. Treatment with 10 µM of CoCl2 significantly augmented the genetic expression of HIF-1α. Cells treated with 10 µM of CoCl2 showed changes in the levels of growth factors and cytokines produced. It was very evident that CoCl2 also increased the expression of OCT4 and SOX2, which is the modulation of stemness of DPSCs. A CoCl2 treatment-induced hypoxic environment modulates the secretory profile of DPSCs.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 5 ( 2021-04-27), p. 349-
    Kurzfassung: Objective: To demonstrate the levels of parathyroid hormone secretion and genetic expressions of parathyroid hormone (PTH) and PTH1 receptor (PTH1R) genes in the dental pulp stem cells (DPSCs) from different age groups before and after induction of osteogenic differentiation. In addition, we also wanted to check their correlation with the degree of osteogenic differentiation. Methods: Human primary DPSCs from three age groups (milk tooth (SHEDs), 7–12 years old; young DPSCs (yDPSCs), 20–40 years old; old DPSCs (oDPSCs), 60+ years old) were characterized for mesenchymal stem cell (MSC) markers. DPSCs were subjected to osteogenic differentiation and functional staining. Gene expression levels were analyzed by qRT-PCR. Surface receptor analysis was done by flow cytometry. Comparative protein levels were evaluated by ELISA. Results: All SHEDs, yDPSCs, and oDPSCs were found to be expressing mesenchymal stem cell markers. SHEDs showed more mineralization than yDPSCs and oDPSCs after osteogenic induction. SHEDs exhibited higher expression of PTH and PTH1R before and after osteogenic induction, and after osteogenic induction, SHEDs showed more expression for RUNX2, ALPL, and OCN. Higher levels of PTH were observed in SHEDs and yDPSCs, and the number of PTH1R positive cells was relatively lower in yDPSCs and oDPSCs than in SHEDs. After osteogenic induction, SHEDs were superior in the secretion of OPG, and the secretions of ALPL and PTH and the number of PTH1R positive cells were relatively low in the oDPSCs. Conclusions: The therapeutic quality of dental pulp stem cells is largely based on their ability to retain their stemness characteristics. This study emphasizes the criterion of aging, which affects the secretion of PTH by these cells, which in turn attenuates their osteogenic potential.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    In: Journal of Personalized Medicine, MDPI AG, Vol. 11, No. 5 ( 2021-05-18), p. 430-
    Kurzfassung: Autogenous gingival grafts used for root coverage or gingival augmentation procedures often result in donor site morbidity. Living cellular constructs as an exogenous alternative have been proven to be associated with lower morbidity. With the available background information, the present study aims to assess if quercetin-induced living cell constructs, derived from dental pulp stem cells, have the potential to be applied as a tool for soft tissue augmentation. The characterized dental pulp stem cells (positive for CD73, CD90, and negative for CD34, HLA-DR) were expanded in Dulbecco’s Modified Eagle’s medium (DMEM) supplemented with 10 mM quercetin. The handling properties of the quercetin-induced dental pulp stem cell constructs were assessed by visual, and tactile sensation. A microscopic characterization using hematoxylin and eosin staining, and qRT-PCR-based analysis for stemness-associated genes (OCT4, NANOG, SOX2, and cMyc) was also performed. Dental pulp stem cells without quercetin administration were used as the control. Dental pulp stem cell constructs induced by quercetin easily detached from the surface of the plate, whereas there was no formation in the control cells. It was also simple to transfer the induced cellular construct on the flattened surface. Microscopic characterization of the constructs showed cells embedded in a tissue matrix. Quercetin also increased the expression of stemness-related genes. The use of quercetin-induced DPSC living constructs for soft tissue augmentation could provide an alternative to autogenous soft tissue grafts to lower patient morbidity and improve esthetic outcomes.
    Materialart: Online-Ressource
    ISSN: 2075-4426
    Sprache: Englisch
    Verlag: MDPI AG
    Publikationsdatum: 2021
    ZDB Id: 2662248-8
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...