GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Geosciences, MDPI AG, Vol. 7, No. 4 ( 2017-11-17), p. 117-
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2017
    detail.hit.zdb_id: 2655946-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Water, MDPI AG, Vol. 14, No. 2 ( 2022-01-16), p. 252-
    Abstract: The objective of this study is to reveal the isotopic composition of ice and meltwater in glaciated regions of South-Eastern Altai. The paper depicts differences between the isotopic composition of glacier ice from several types of glaciers and from various locations. Detected differences between the isotopic composition of glacier ice in diversified parts of the study region are related to local climate patterns. Isotopic composition of meltwater and isotopic separation for glacier rivers runoff showed that in the Tavan-Bogd massif, seasonal snow participates more in the formation of glacier runoff due to better conditions for snow accumulation on the surface of glaciers. In other research areas pure glacier meltwater prevails in runoff.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Remote Sensing, MDPI AG, Vol. 14, No. 6 ( 2022-03-20), p. 1508-
    Abstract: The study aims to reconstruct the Altai glaciers at the maximum of the LIA, to estimate the reduction of the Altai glaciers from the LIA maximum to the present, and to analyze glacier reduction rates on the example of the Tavan Bogd mountain range. Research was based on remote sensing and field data. The recent glaciation in the southern part of the Altai is estimated (1256 glaciers with the total area of 559.15 ± 31.13 km2), the area of the glaciers of the whole Altai mountains is estimated at 1096.55 km2. In the southern part of Altai, 2276 glaciers with a total area of 1348.43 ± 56.16 km2 were reconstructed, and the first estimate of the LIA glacial area for the entire Altai mountain system was given (2288.04 km2). Since the LIA, the glaciers decrease by 59% in the southern part of Altai and by 47.9% for the whole Altai. The average increase in ELA in the southern part of Altai was 106 m. The larger increase of ELA in the relatively humid areas was probably caused by a decrease in precipitation. Glaciers in the Tavan Bogd glacial center degraded with higher rates after 1968 relative to the interval between 1850–1968. One of the intervals of fast glacier shrinkage in 2000–2010 was caused by a dry and warm interval between 1989 and 2004. However, the fast decrease in glaciers in 2000–2010 was mainly caused by the shrinkage or disappearance of the smaller glaciers, and large valley glaciers started a fast retreat after 2010. The study results present the first evaluation of the glacier recession of the entire Altai after the LIA maximum.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Geosciences, MDPI AG, Vol. 8, No. 11 ( 2018-11-12), p. 414-
    Abstract: The Tavan Bogd mountains (of which, the main peak, Khuiten Uul, reaches 4374 m a.s.l.) are situated in the central part of the Altai mountain system, in the territories of Russia, Mongolia and China. The massif is the largest glacierized area of Altai. The purposes of this study were to provide a full description of the scale and structure of the modern glacierized area of the Tavan Bogd massif, to reconstruct the glaciers of the Little Ice Age (LIA), to estimate the extent of the glaciers in 1968, and to determine the main glacial trends, and their causes, from the peak of the LIA. This work was based on the results of long-term field studies and analysis of satellite and aerial data. At the peak of the LIA, Tavan Bogd glaciation comprised 243 glaciers with a total area of 353.4 km2. From interpretation of Corona images, by 1968 the number of glaciers had decreased to 236, with a total area of 242 km2. In 2010, there were 225 glaciers with a total area of 201 km2. Thus, since the peak of the LIA, the glacierized area of the Tavan Bogd mountains decreased by 43%, which is somewhat less than for neighboring glacial centers (i.e., Ikh-Turgen, Tsambagarav, Tsengel-Khairkhan and Mongun-Taiga mountains). The probable causes are higher altitude and the predominance of larger glaciers resistant to warming. Accordingly, the smallest decline in Tavan Bogd occurred in the basins of the Tsagan-Gol (31.7%) and Sangadyr (36.4%) rivers where the largest glaciers are located. In contrast, on the lower periphery of the massif, where small glaciers predominate, the relative reduction was large (74–79%). In terms of general retreat trends, large valley glaciers retreated faster in 1968–1977 and after 2010. During the 1990s, the retreat was slow. After 2010, glacial retreat was rapid. The retreat of glaciers in the last 50–60 years was caused by a trend decrease in precipitation until the mid-1970s, and a sharp warming in the 1990s and early 2000s.
    Type of Medium: Online Resource
    ISSN: 2076-3263
    Language: English
    Publisher: MDPI AG
    Publication Date: 2018
    detail.hit.zdb_id: 2655946-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...