GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Tang, Yuyang  (2)
Material
Publisher
  • MDPI AG  (2)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sensors Vol. 23, No. 4 ( 2023-02-15), p. 2179-
    In: Sensors, MDPI AG, Vol. 23, No. 4 ( 2023-02-15), p. 2179-
    Abstract: The stability of the Great Wall is mainly affected by traffic vibrations and natural hazards, such as strong winds, heavy rainfall, and thunderstorms, which are extremely harmful to the safety of the Great Wall. To determine the impact of the above factors on the Great Wall, a comparative analysis based on MEMS (micro-electro-mechanical system) accelerometer data was conducted between the non-impacts and the impacts of the above factors. An analysis of the relationship between vibration acceleration and each potential hazard based on a visual time series chart was presented using the data of accelerometers, traffic video, meteorology, rainfall, and wind. According to the results, traffic vibration is one of the primary dangerous factors affecting the stability of the Great Wall, Moreover, the intensity of the vibrations increases with the traffic flow. Thunderstorms also influence the stability of the Great Wall, with enhanced thunderstorm excitation resulting in increased vibration displacement. Furthermore, wind load is an influencing factor, with average wind speeds greater than 9 m/s significantly affecting the stability of the Great Wall. Rainfall has no impact on the stability of the Great Wall in the short term. This research can provide important guidance for risk assessment and protection of the Great Wall.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Remote Sensing Vol. 15, No. 4 ( 2023-02-20), p. 1166-
    In: Remote Sensing, MDPI AG, Vol. 15, No. 4 ( 2023-02-20), p. 1166-
    Abstract: Dynamic response monitoring is of great significance for large engineering structural anomaly diagnosis and early warning. Although the global navigation satellite system (GNSS) has been widely used to measure the dynamic structural response, it has the limitation of a relatively low sampling rate. The micro-electro-mechanical system (MEMS) accelerometer has a high sampling frequency, but it belongs to the approaches of acceleration measurements as the absolute position is unavailable. Hence, in this paper, an integrated vibration monitoring system that includes a GNSS receiver and 3-axis MEMS accelerometers was developed to obtain the dynamic responses under the thunder loading. First, a new denoising algorithm for thunderstorm-induced vibration data was proposed based on variational mode decomposition (VMD) and the characteristics of white noise, and the low-frequency disturbance was separated from the GNSS displacement time series. Then, a power spectral density (PSD) analysis using data collected by the integrated system was carried out to extract low/high natural frequencies. Finally, field monitoring data collected at Huanghuacheng, Hefangkou, and Qilianguan in Beijing’s Huairou District were used to validate the effectiveness of the integrated system and processing scheme. According to the results, the proposed integrated GNSS/MEMS accelerometer system can not only be used to detect thunder loading events, but also completely extract the natural frequency based on PSD analysis. The high natural frequencies detected from the accelerometer data of the four Great Wall monitoring stations excited by the thunderstorms are 42.12 Hz, 12.94 Hz, 12.58 Hz, and 5.95 Hz, respectively, while the low natural frequencies detected from the GNSS are 0.02 Hz, 0.019 Hz, 0.016 Hz, and 0.014 Hz, respectively. Moreover, thunderstorms can cause the Great Wall to vibrate with a maximum displacement of 14.3 cm.
    Type of Medium: Online Resource
    ISSN: 2072-4292
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2513863-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...