GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (9)
  • Tang, Juan  (9)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (9)
Language
Years
Subjects(RVK)
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 143, No. 1 ( 2021-01-05), p. 65-77
    Abstract: Recent discoveries have indicated that, in the developing heart, sinus venosus and endocardium provide major sources of endothelium for coronary vessel growth that supports the expanding myocardium. Here we set out to study the origin of the coronary vessels that develop in response to vascular endothelial growth factor B (VEGF-B) in the heart and the effect of VEGF-B on recovery from myocardial infarction. Methods: We used mice and rats expressing a VEGF-B transgene, VEGF-B-gene–deleted mice and rats, apelin-CreERT, and natriuretic peptide receptor 3–CreERT recombinase-mediated genetic cell lineage tracing and viral vector–mediated VEGF-B gene transfer in adult mice. Left anterior descending coronary vessel ligation was performed, and 5-ethynyl-2’-deoxyuridine–mediated proliferating cell cycle labeling; flow cytometry; histological, immunohistochemical, and biochemical methods; single-cell RNA sequencing and subsequent bioinformatic analysis; microcomputed tomography; and fluorescent- and tracer-mediated vascular perfusion imaging analyses were used to study the development and function of the VEGF-B–induced vessels in the heart. Results: We show that cardiomyocyte overexpression of VEGF-B in mice and rats during development promotes the growth of novel vessels that originate directly from the cardiac ventricles and maintain connection with the coronary vessels in subendocardial myocardium. In adult mice, endothelial proliferation induced by VEGF-B gene transfer was located predominantly in the subendocardial coronary vessels. Furthermore, VEGF-B gene transduction before or concomitantly with ligation of the left anterior descending coronary artery promoted endocardium-derived vessel development into the myocardium and improved cardiac tissue remodeling and cardiac function. Conclusions: The myocardial VEGF-B transgene promotes the formation of endocardium-derived coronary vessels during development, endothelial proliferation in subendocardial myocardium in adult mice, and structural and functional rescue of cardiac tissue after myocardial infarction. VEGF-B could provide a new therapeutic strategy for cardiac neovascularization after coronary occlusion to rescue the most vulnerable myocardial tissue.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2018
    In:  Circulation Research Vol. 122, No. 7 ( 2018-03-30), p. 984-993
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 122, No. 7 ( 2018-03-30), p. 984-993
    Abstract: Endocardium is the major source of coronary endothelial cells (ECs) in the fetal and neonatal hearts. It remains unclear whether endocardium in the adult stage is also the main origin of neovascularization after cardiac injury. Objective: To define the vascular potential of adult endocardium in homeostasis and after cardiac injuries by fate-mapping studies. Methods and Results: We generate an inducible adult endocardial Cre line ( Npr3 [natriuretic peptide receptor C]- CreER ) and show that Npr3-CreER efficiently and specifically labels endocardial cells but not coronary blood vessels in the adult heart. The adult endocardial cells do not contribute to any vascular ECs during cardiac homeostasis. To examine the formation of blood vessels from endocardium after injury, we generate 4 cardiac injury models with Npr3-CreER mice: myocardial infarction, myocardial ischemia–reperfusion, cryoinjury, and transverse aortic constriction. Lineage tracing experiments show that adult endocardium minimally contributes to coronary ECs after myocardial infarction. In the myocardial ischemia–reperfusion, cryoinjury, or transverse aortic constriction models, adult endocardial cells do not give rise to any vascular ECs, and they remain on the inner surface of myocardium that connects with lumen circulation. In the myocardial infarction model, very few endocardial cells are trapped in the infarct zone of myocardium shortly after ligation of coronary artery, indicating the involvement of endocardial entrapment during blood vessels formation. When these adult endocardial cells are relocated and trapped in the infarcted myocardium by transplantation or myocardial constriction model, very few endocardial cells survive and gain vascular EC properties, and their contribution to neovascularization in the injured myocardium remains minimal. Conclusions: Unlike its fetal or neonatal counterpart, adult endocardium naturally generates minimal, if any, coronary arteries or vascular ECs during cardiac homeostasis or after injuries.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2019
    In:  Circulation Research Vol. 125, No. 3 ( 2019-07-19), p. 343-355
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 125, No. 3 ( 2019-07-19), p. 343-355
    Abstract: The developing heart is composed of cardiomyocytes and noncardiomyocytes since the early stage. It is generally believed that noncardiomyocytes including the cardiac progenitors contribute to new cardiomyocytes of the looping heart. However, it remains unclear what the cellular dynamics of nonmyocyte to cardiomyocyte conversion are and when the lineage segregation occurs during development. It also remains unknown whether nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. Objective: We quantify the lineage conversion of noncardiomyocytes to cardiomyocytes in the embryonic and neonatal hearts and determine when the 2 cell lineages segregate during heart development. Moreover, we directly test if nonmyocyte to cardiomyocyte conversion contributes to neonatal heart regeneration. Methods and Results: We generated a dual genetic lineage tracing strategy in which cardiomyocytes and noncardiomyocytes of the developing heart could be simultaneously labeled by 2 orthogonal recombination systems. Genetic fate mapping showed that nonmyocyte to cardiomyocyte conversion peaks at E8.0 (embryonic day) to E8.5 and gradually declines at E9.5 and E10.5. Noncardiomyocytes do not generate any cardiomyocyte at and beyond E11.5 to E12.5. In the neonatal heart, noncardiomyocytes also do not contribute to any new cardiomyocyte in homeostasis or after injury. Conclusions: Noncardiomyocytes contribute to new cardiomyocytes of the developing heart at early embryonic stage before E11.5. The noncardiomyocyte and cardiomyocyte lineage segregation occurs between E10.5 and E11.5, which is maintained afterward even during neonatal heart regeneration.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2019
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2022
    In:  Circulation Research Vol. 130, No. 3 ( 2022-02-04), p. 352-365
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 130, No. 3 ( 2022-02-04), p. 352-365
    Abstract: Unraveling how new coronary arteries develop may provide critical information for establishing novel therapeutic approaches to treating ischemic cardiac diseases. There are 2 distinct coronary vascular populations derived from different origins in the developing heart. Understanding the formation of coronary arteries may provide insights into new ways of promoting coronary artery formation after myocardial infarction. Methods: To understand how intramyocardial coronary arteries are generated to connect these 2 coronary vascular populations, we combined genetic lineage tracing, light sheet microscopy, fluorescence micro-optical sectioning tomography, and tissue-specific gene knockout approaches to understand their cellular and molecular mechanisms. Results: We show that a subset of intramyocardial coronary arteries form by angiogenic extension of endocardium-derived vascular tunnels in the neonatal heart. Three-dimensional whole-mount fluorescence imaging showed that these endocardium-derived vascular tunnels or tubes adopt an arterial fate in neonates. Mechanistically, we implicate Mettl3 (methyltransferase-like protein 3) and Notch signaling in regulating endocardium-derived intramyocardial coronary artery formation. Functionally, these intramyocardial arteries persist into adulthood and play a protective role after myocardial infarction. Conclusions: A subset of intramyocardial coronary arteries form by extension of endocardium-derived vascular tunnels in the neonatal heart.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 35, No. 7 ( 2015-07), p. 1687-1695
    Abstract: To investigate whether rs12731181 (A→G) interrupted miR-590-3p–mediated suppression of the prostaglandin F 2α receptor (FP) and whether it is associated with essential hypertension in the Chinese population. Approach and Results— We found that miR-590-3p regulates human FP gene expression by binding to its 3′-untranslated region. rs12731181 (A→G) altered the binding affinity between miR-590-3p and its FP 3′-untranslated region target, thus reducing the suppression of FP expression, which, in turn, enhanced FP receptor–mediated contractility of vascular smooth muscle cells. Overexpression of FP augmented vascular tone and elevated blood pressure in mice. An association study was performed to analyze the relationship between the FP gene and essential hypertension in the Han Chinese population. The results indicated that the rs12731181 G allele was associated with susceptibility to essential hypertension. Carriers of the AG genotype exhibited significantly higher blood pressure than those of the AA genotype. FP gene expression was significantly higher in human peripheral leukocytes from individuals with the AG genotype than that in leukocytes from individuals with the AA genotype. Conclusions— rs12731181 in the seed region of the miR-590-3p target site is associated with increased risk of essential hypertension and represents a new paradigm for FP involvement in blood pressure regulation.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2015
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 138, No. 25 ( 2018-12-18), p. 2967-2969
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2018
    In:  Circulation Vol. 138, No. 8 ( 2018-08-21), p. 793-805
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 138, No. 8 ( 2018-08-21), p. 793-805
    Abstract: Whether the adult mammalian heart harbors cardiac stem cells for regeneration of cardiomyocytes is an important yet contentious topic in the field of cardiovascular regeneration. The putative myocyte stem cell populations recognized without specific cell markers, such as the cardiosphere-derived cells, or with markers such as Sca1 + , Bmi1 + , Isl1 + , or Abcg2 + cardiac stem cells have been reported. Moreover, it remains unclear whether putative cardiac stem cells with unknown or unidentified markers exist and give rise to de novo cardiomyocytes in the adult heart. Methods: To address this question without relying on a particular stem cell marker, we developed a new genetic lineage tracing system to label all nonmyocyte populations that contain putative cardiac stem cells. Using dual lineage tracing system, we assessed whether nonmyocytes generated any new myocytes during embryonic development, during adult homeostasis, and after myocardial infarction. Skeletal muscle was also examined after injury for internal control of new myocyte generation from nonmyocytes. Results: By this stem cell marker–free and dual recombinases–mediated cell tracking approach, our fate mapping data show that new myocytes arise from nonmyocytes in the embryonic heart, but not in the adult heart during homeostasis or after myocardial infarction. As positive control, our lineage tracing system detected new myocytes derived from nonmyocytes in the skeletal muscle after injury. Conclusions: This study provides in vivo genetic evidence for nonmyocyte to myocyte conversion in embryonic but not adult heart, arguing again the myogenic potential of putative stem cell populations for cardiac regeneration in the adult stage. This study also provides a new genetic strategy to identify endogenous stem cells, if any, in other organ systems for tissue repair and regeneration.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2018
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2021
    In:  Circulation Research Vol. 128, No. 1 ( 2021-01-08), p. 133-135
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 128, No. 1 ( 2021-01-08), p. 133-135
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 118, No. 8 ( 2016-04-15), p. 1194-1207
    Abstract: Autologous adipose-derived stromal cells (ASCs) offer great promise as angiogenic cell therapy for ischemic diseases. Because of their limited self-renewal capacity and pluripotentiality, the therapeutic efficacy of ASCs is still relatively low. Thromboxane has been shown to play an important role in the maintenance of vascular homeostasis. However, little is known about the effects of thromboxane on ASC-mediated angiogenesis. Objective: To explore the role of the thromboxane-prostanoid receptor (TP) in mediating the angiogenic capacity of ASCs in vivo. Methods and Results: ASCs were prepared from mouse epididymal fat pads and induced to differentiate into endothelial cells (ECs) by vascular endothelial growth factor. Cyclooxygenase-2 expression, thromboxane production, and TP expression were upregulated in ASCs on vascular endothelial growth factor treatment. Genetic deletion or pharmacological inhibition of TP in mouse or human ASCs accelerated EC differentiation and increased tube formation in vitro, enhanced angiogenesis in in vivo Matrigel plugs and ischemic mouse hindlimbs. TP deficiency resulted in a significant cellular accumulation of β-catenin by suppression of calpain-mediated degradation in ASCs. Knockdown of β-catenin completely abrogated the enhanced EC differentiation of TP-deficient ASCs, whereas inhibition of calpain reversed the suppressed angiogenic capacity of TP re-expressed ASCs. Moreover, TP was coupled with Gαq to induce calpain-mediated suppression of β-catenin signaling through calcium influx in ASCs. Conclusion: Thromboxane restrained EC differentiation of ASCs through TP-mediated repression of the calpain-dependent β-catenin signaling pathway. These results indicate that TP inhibition could be a promising strategy for therapy utilizing ASCs in the treatment of ischemic diseases.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2016
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...