GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1797-1797
    Abstract: Background: The inhibition of BCR-ABL1 kinase with tyrosine kinase inhibitors (TKIs) has markedly improved the prognosis of chronic myeloid leukemia (CML). Recently, it has been recognized that some CML patients with a complete molecular response (CMR) are able to maintain treatment-free remission (TFR) after discontinuation of TKIs. However, no predictive prognostic factors for successful discontinuation of the treatment have yet been identified. We set out to further clarify the role of predictive biomarkers in molecular relapse and non-relapse after ABL TKI discontinuation. Materials and methods: Patients in sustained CMR (MR 4.5) undergoing TKI therapy were eligible for inclusion in the study. Molecular relapse was defined as loss of major molecular response (MMR) of at least one point. Genomic DNA was obtained from whole blood using a DNA Extractor WB Kit (Wako, Osaka, Japan), and was subjected to polymerase chain reaction (PCR) amplification using primers designed to detect a deletion site (2903 bp) in intron two of the BCL2L11 gene (forward: 5′-AATACCACAGAGGCCCACAG-3′; reverse: 5′-GCCTGAAGGTGCTGAGAAAG-3′) and JumpStart RedAccuTaq LA DNA polymerase (Sigma Aldrich, St. Louis, MO, USA). Results: 32 CML patients (17 men, 15 women, median age 58.4 years) were included in this study (Sokal category; low 24, intermediate 7, high 1). Six patients were treated with IFNα before TKI treatment, and 3 were treated with IFNα after stopping TKI. Median duration from TKI initiation to discontinuation was 79.3 months (range; 22 to 138 months); median duration of CMR before TKI discontinuation was 47.3 months (range; 5 to 97 months). Seven patients showed loss of MMR; 6 relapsed within 6 months and one showed late relapse at 25 months after discontinuation. The cumulative incidence of MMR loss was estimated as 18.8% at 12 months and at 24 months. Fluctuation of BCR-ABL transcript levels below the MMR threshold ( 〉 two consecutive positive values) was observed in 6.25% of patients at 24 months after ABL TKI discontinuation. Treatment-free remission was estimated as 81.2% at 12 months and at 24 months. The median period of restoration of second CMR was 6.0 months in re-treated patients. No patient died during the follow-up period. TKI-free remission was estimated as 78.1% at 30 months. There was only a significant difference in BCL2L11 (BIM) deletion polymorphism between the patients who maintained and those who lost MMR (p = 0.0253). No significant difference was observed in prior IFNα therapy, time to complete cytogenetic response (CCyR), time to MMR, and time to CMR between relapsing and non-relapsing patients. Conclusion: Our study shows a specific association between BCL2L11 (BIM) deletion polymorphism and clinical outcome after ABL TKI discontinuation in patients with long-lasting molecular undetectable residual disease. BCL2L11 (BIM) deletion polymorphism may predict relapse after ABL TKI discontinuation, which may have an impact on future ABL TKI discontinuation trials. These results further illustrate the importance of single nucleotide polymorphisms in successful long-term treatment of CML. Disclosures Ohyashiki: Bristol-Myers Squibb KK : Research Funding, Speakers Bureau; Novartis KK: Research Funding, Speakers Bureau.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Leukemia & Lymphoma, Informa UK Limited, Vol. 60, No. 5 ( 2019-04-16), p. 1283-1288
    Type of Medium: Online Resource
    ISSN: 1042-8194 , 1029-2403
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2030637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: British Journal of Haematology, Wiley, Vol. 150, No. 6 ( 2010-09), p. 705-707
    Type of Medium: Online Resource
    ISSN: 0007-1048
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2010
    detail.hit.zdb_id: 1475751-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 1894-1894
    Abstract: Multiple myeloma (MM) is one of the common hematological malignancies and is a uniformly fatal disorder of B cells characterized by accumulation of abnormal plasma cells in the bone marrow.Clinical progression of patients with MM is improved with the proteasome inhibitor (PI) (e.g. bortezomib) and the immunomodulatory drugs (IMiDs) such as thalidomide and lenalidomide. Although PI and IMiDs have considerably changed the treatment paradigm of MM, many patients show disease relapse due to developing into drug resistance of MM cells. Since the prognosis remains poor for patients with refractory disease, the new therapeutic strategies are required to treat against these patients. Sphingosine-1-phosphate (S1P) is a potent bioactive sphingolipid. Two isoforms of sphingosine kinases (SphKs), SK1 and SK2, catalyze the formation of the S1P in mammalian cells. SphKs have also been shown to be up-regulated in the variety of cancer types. SphKs/S1P/S1P receptor (S1PR) axis is involved in multiple biological processes. It has been reported that S1P is involved in cell proliferation, angiogenesis and inflammation. S1P is also involved in cancer progression including cell transformation, oncogenesis and cell survival in hematological malignancies such as multiple myeloma. Therefore, S1P and SphKs may present attractive targets for MM treatment. One of the S1P analog, fingolimod (FTY720), which is an orally active immunomodulatory drug, is developed for the treatment of multiple sclerosis. SKI-I, which is a non-lipid pan-SphK inhibitor and ABC294640, selective inhibitor of SK2, are currently investigated in a pivotal phase 1 clinical trial against solid tumors. In this study, we investigated the efficacy of fingolimod, SKI-I, and ABC294640 by using the MM cell lines, RPMI8226, MM1.S and MM1.R. 72 hours treatment of fingolimod exhibited cell growth inhibition of MM cell lines in a dose dependent manner. Treatment of SKI-I and ABC294640 also exhibited cell growth inhibition in a dose dependent manner. Since S1P is the ligand for a family of five G-protein-coupled receptors with distinct signaling pathways that regulate angiogenesis and chemotaxis, we next evaluated the chemotactic response of human umbilical vein endothelial cells (HUVEC). We found that 4 hours treatment of S1P significantly induced the migration of HUVECs compared to control medium. Treatment of HUVECs with fingolimod inhibited S1P-stimulated chemotaxis in a dose dependent manner. We also found that S1P-induced chemotaxis was abolished by the SKI-I and ABC294640. These results suggest that intracellular SK1 and SK2 may play the important role in S1P induced chemotaxis of HUVEC. We next investigated the S1P concentrations in MM patient by enzyme-linked immune sorbent assay (ELISA), because S1P is a potent tumorigenic growth factor that is likely released from tumor cells. We found that serum concentrations of S1P were significantly higher in patient with MM compared with normal samples. The average S1P levels of MM and normal control are 1503.431 and 1103.38 (p 〈 0.05). We also found that conditioned medium from MM cell line had chemotactic activity for HUVECs. These results implicate that S1P may be a novel biomarker for early stage of MM and that S1P is an important bioactive sphingolipid involved in angiogenesis. In this study, we also demonstrate that fingolimod, SKI-I and ABC294640 have potent preclinical anti-tumor activity in MM. These agents possibly inhibit angiogenesis with relation to MM cell growth and offer unique opportunities for novel therapeutic strategies for the treatment of multiple myeloma. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1333-1333
    Abstract: Abstract 1333 Chronic myeloid leukemia (CML) is characterized by cytogenetic aberration (Philadelphia chromosome: Ph) and chimeric tyrosine kinase BCR-ABL. ABL tyrosine kinase inhibitor, imatinib has demonstrated the potency against CML patients. However, resistance to imatinib can develop in CML patients due to BCR-ABL point mutations. One of T315I mutation is resistant to currently available ABL tyrosine kinase inhibitors. Therefore, new approach against T315I mutant may improve the outcome of Ph-positive leukemia patients. Aurora kinases are serine/threonine kinases and upregulated in many malignancies including leukemia, and play an important role in cell cycle control and tumor proliferations. Because Aurora kinases are overexpressed in leukemia cells, Aurora kinases may present attractive targets for leukemia treatment. One of Aurora kinase inhibitor, MLN8237 (alisertib) is an oral and selective Aurora kinase A inhibitor and is currently being investigated in a pivotal phase 3 clinical trial against hematological malignancies. We suggested that alisertib mediated inhibition Aurora kinase activity and in combination with ponatinib, also known as AP24534 may abrogate the proliferation and survival of Ph-positive cells including T315I mutation. In this study, we investigated the combination therapy with a ponatinib and an alisertib by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, ponatinib resistant Ba/F3 cells and T315I primary sample. Protein expression of Aurora A and B were increased in Ph-positive leukemia cells. 72 hours treatment of alisertib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. Alisertib also induced cell cycle arrest. The treatment of ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5) conditioned media. We found that the treatment of alisertib abrogated the protective effects of HS-5 conditioned media in K562 cells. We investigated the alisertib activity against T315I positive cells. Alisertib potently induced cell growth inhibition of Ba/F3 cells ectopically expressing T315I mutation and induced cell cycle arrest. We investigated the efficacy between ponatinib and alisertib by using these cell lines. Combined treatment of Ba/F3 T315I cells with ponatinib and alisertib caused significantly more cytotoxicity than each drug alone. Ponatinib and alisertib were also effective against T315I primary samples. We examined the intracellular signaling of alisertib. Phosphorylation of Aurora A was inhibited in a time dependent manner. We also found the phosphorylation of histone H3 was also reduced in a dose dependent manner suggested that high concentration of alisertib also inhibits Aurora B activity. We next investigated by using ponatinib resistant Ba/F3 cells. In the ponatinib resistant cell lines, IC50 of ponatinib was up to 200 nM. BCR-ABL triple point mutations (T315I, E255K and Y253H) were detected by direct sequence analysis. The treatment of alisertib exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells in the dose dependent manner. Alisertib induced cell cycle arrest in ponatinib resistant cells. Combined treatment of Ba/F3 ponatinib resistant cells with ponatinib and alisertib caused significantly more cytotoxicity. To assess the activity of alisertib and ponatinib, we performed to test on CML tumor formation in mice. We injected nude mice subcutaneously with 1×107 Ba/F3 T315I cells. A dose of 30 mg/kg/day p.o of ponatinib and 30 mg/kg/day p.o of alisertib inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed indicating the feasibility of alisertib combination strategies in the clinic. Data from this study suggested that administration of the ponatinib and Aurora inhibitor, alisertib may be a powerful strategy against BCR-ABL mutant cells including T315I. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 3985-3985
    Abstract: Chronic myeloid leukemia (CML) is characterized by the t(9:22) translocation known as the Philadelphia chromosome (Ph). ABL tyrosine kinase inhibitor (TKI), imatinib and second-generation ABL TKIs, nilotinib and dasatinib have demonstrated the potency against CML patients. However, resistance to ABL TKI can develop in CML patients due to BCR-ABL point mutations. Moreover, ABL TKIs do not eliminate the leukemia stem cells (LSCs). These leukemia cells are contained within a niche in the bone marrow and are often impervious to current treatments. Therefore, new approach against BCR-ABL mutant cells and LSCs may improve the outcome of Ph-positive leukemia patients. Polo-like kinases (PLK) are the family of serine threonine kinases and essential for mitosis. PLK is also critical regulator of cell cycle progression and DNA damage response. One of the PLK and phosphoinositide 3-kinase (PI3K) inhibitor, rigosertib (ON 01910.Na) is a novel synthetic benzyl styryl sulfone that is cytotoxic against a variety of human tumor cell lines. Rigosertib is currently being investigated in a pivotal phase 3 clinical trial against hematological malignancies such as myelodysplastic syndromes (MDS). We suggested that rigosertib mediated inhibition PLK and PI3K activity and in combination with ABL TKIs may abrogate the proliferation and survival of Ph-positive leukemia cells including T315I mutation and ABL TKI resistant. In this study, we investigated the combination therapy with a rigosertib and an ABL TKIs (imatinib, nilotinib and ponatinib) by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line with T315I mutant, nilotinib resistant K562 and ponatinib resistant Ba/F3 cells. 72 h treatment of rigosertib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. The treatment of imatinib, nilotinib and ponatinib exhibits cell growth inhibition partially against K562 cells in the presence of feeder cell (HS-5) conditioned media. We found that the treatment of rigosertib abrogated the protective effects of HS-5 conditioned media in K562 cells. We examined the intracellular signaling after treatment of rigosertib. Phosphorylation of BCR-ABL, Crk-L was not reduced. However, activity of caspase 3 was increased. We next investigated the efficacy between imatinib and rigosertib by using these cell line. Combined treatment of K562 cells with imatinib and rigosertib caused significantly more cytotoxicity than each drug alone. Phosphorylation of BCR-ABL, Crk-L was reduced and cleaved PARP and γH2A.X phosphorylation was increased after imatinib and rigosertib treatment. Anti-apoptotic protein, Mcl-1 was also decreased. We also found the phosphorylation of histone H3 was increased after rigosertib treatment suggested that the cells arrested in G2/M phase. We investigated the rigosertib activity against T315I positive cells. Rigosertib potently induced cell growth inhibition of Ba/F3 T315I cells. Combined treatment of Ba/F3 T315I cells with ponatinib and rigosertib caused significantly more cytotoxicity than each drug alone.We next investigated by using ponatinib resistant Ba/F3 cells and nilotinib resistant K562 cells. In the ponatinib resistant cell lines, IC50 of ponatinib was up to 200 nM. BCR-ABL triple point mutations (T315I, E255K and Y253H) were detected by direct sequence analysis. The treatment of rigosertib exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells and K562 nilotinib resistant cells. These results indicated that administration of the PLK and PI3K inhibitor, rigosertib may be a powerful strategy against ABL TKI resistant cells and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures: Ohyashiki: Novartis: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Society of Hematology ; 2014
    In:  Blood Vol. 124, No. 21 ( 2014-12-06), p. 3127-3127
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 3127-3127
    Abstract: Introduction: Chronic myelogenous leukemia (CML) is characterized by cytogenetic aberration (Philadelphia chromosome: Ph) and chimeric oncoprotein BCR-ABL. ABL tyrosine kinase inhibitor (TKI) therapy such as imatinib, nilotinib and dasatinib has improved the survival of Ph-positive leukemia patients. Although impressive clinical responses are obtained in the majority of CML patients, increasing evidence of acquired resistance to TKIs have been documented in clinically. Moreover, ABL TKIs cannot eradicate leukemia stem cells, thus, TKIs do not appear to lead to a cure the diseases. Therefore, new approach against BCR-ABL mutant cells and leukemia stem cells may improve the outcome of Ph-positive leukemia patients. Phosphoinositide 3-kinase (PI3K) pathway regulates cell metabolism, proliferation and survival. Furthermore, aberrant activation of PI3K signaling pathway has been shown to be important in initiation maintenance of human cancers. Copanlisib, also known as BAY80-6946 is a PI3K inhibitor with potential antineoplastic activity. Copanlisib is being investigated in a pivotal phase 2 clinical trial against hematological malignancies such as malignant lymphoma. We hypothesized that targeting PI3K, in combination with ABL TKI, would result in enhanced therapeutic activity in Ph-positive leukemia cells including T315I mutation and ABL TKI resistant. Materials and methods: We investigated the combination therapy with a copanlisib and an ABL TKIs (imatinib, nilotinib and ponatinib) by using the BCR-ABL positive cell line, K562, murine Ba/F3 cell line which was transfected with T315I mutant, nilotinib resistant K562, ponatinib resistant Ba/F3 cells and primary sample. Results: 72 h treatment of copanlisib exhibits cell growth inhibition against K562 cells in a dose dependent manner. The treatment of imatinib, nilotinib and ponatinib exhibits cell growth inhibition partially against K562 cells co-cultured with feeder cell line, HS-5. We found that the treatment of copanlisib abrogated the protective effects of HS-5 in K562 cells. We examined the intracellular signaling after treatment of copanlisib. High concentration of copanlisib reduced the phosphorylation of BCR-ABL and Crk-L. Activity of caspase 3 and poly (ADP-ribose) polymerase (PARP) was increased. We next investigated the efficacy between ABL TKI and copanlisib by using these cell line. Phosphorylation of BCR-ABL, Crk-L and Akt was reduced after imatinib and copanlisib treatment. We investigated the copanlisib activity against T315I positive cells. Copanlisib potently induced cell growth inhibition of Ba/F3 T315I cells. Combined treatment of Ba/F3 T315I cells with ponatinib and copanlisib caused significantly more cytotoxicity than each drug alone. Phosphorylation of BCR-ABL and Crk-L was reduced and cleaved PARP was increased after ponatinib and copanlisib treatment. To assess the activity of copanlisib and ponatinib, we performed to test on CML tumor formation in mice. We injected nude mice subcutaneously with Ba/F3 T315I mutant cells. A dose of 20 mg/kg/day p.o of ponatinib and 6 mg/kg/three times per week i.p of copanlisib inhibited tumor growth and reduced tumor volume compared with control mice. The treatments were well tolerated with no animal health concerns observed. We also found that the treatment of copanlisib exhibits cell growth inhibition against Ba/F3 ponatinib resistant cells, K562 nilotinib resistant cells and primary sample. Conclusion: These results indicated that administration of the PI3K inhibitor, copanlisib may be a powerful strategy against ABL TKI resistant cells including T315I mutation and enhance cytotoxic effects of ABL TKI against those Ph-positive leukemia cells. Disclosures Ohyashiki: Bristol: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Society of Hematology ; 2015
    In:  Blood Vol. 126, No. 23 ( 2015-12-03), p. 2769-2769
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2769-2769
    Abstract: Introduction: The BCR-ABL1 fusion gene is a causative oncogene in chronic myeloid leukemia (CML) and 30-50% of acute lymphoblastic leukemia cases. Although ABL tyrosine kinase inhibitors (ABL TKI) such as imatinib have improved CML treatment, such therapies cannot cure patients with Philadelphia chromosome (Ph)-positive leukemia because of leukemia stem cells. Moreover, some patients develop BCR-ABL point mutations and become resistant to ABL TKI therapy. In particular, the ABL kinase domain mutation T315I is resistant to imatinib and second-generation ABL TKIs (e.g., nilotinib, dasatinib, and bostinib). Accordingly, this mutation is often found in patients with TKI-resistant disease. A third-generation ABL TKI, ponatinib, was recently developed. Ponatinib is a potent oral tyrosine kinase inhibitor that affects both unmutated and mutated BCR-ABL; it is effective against T315I mutant cells and has been approved for TKI-resistant or intolerant CML and Ph-positive ALL patients.Recently, the vascular endothelial growth factor receptor (VEGFR) inhibitor axitinib was found to exhibit anti-leukemic activity against T315I-mutant disease. Axitinib is an orally active and potent TKI of VEGFRs 1, 2, and 3 and inhibits BCR-ABL1, especially the T315I variant, via a distinct binding conformation. Materials and methods: In this study, we investigated whether axitinib could suppress ponatinib-resistant compound mutant cells harboring the T315I mutation and primary samples. Results: A 72 h axitinib treatment inhibited the growth of Ba/F3 T315I cells (Figure 1A). Immunoblot analysis of axitinib-treated cells revealed dose-dependent decreases in BCR-ABL, the downstream molecule CrkL, and ribosomal S6 protein phosphorylation and increases in caspase 3 and Poly (ADP-ribose) polymerase (PARP) activity. Ponatinib and axitinib also induced apoptosis, significantly increased caspase activity, and reduced Akt activity. In contrast, clinically available concentrations of axitinib did not inhibit the growth of ponatinib-resistant Ba/F3 cells. Immunoblot analysis revealed that BCR-ABL, Crk-L, and S6 kinase phosphorylation were not inhibited by axitinib or ponatinib. Similarly, no increase in caspase activity or decrease in Akt activity was observed following axitinib treatment, and neither ponatinib nor axitinib affected apoptosis in these cells. We next evaluated primary T315I-mutant and ponatinib-resistant compound mutant samples. Axitinib potently inhibited the growth of T315I mutant primary cells in a dose-dependent manner. Immunoblot analysis further revealed reduced Crk-L and S6 kinase phosphorylation after axitinib or ponatinib treatment. In contrast, the growth of ponatinib-resistant primary cells was not affected by ponatinib or axitinib. Immunoblotting revealed that neither ponatinib nor axitinib affected the phosphorylation of Crk-L and S6 kinase in ponatinib-resistant cells. Conclusion: In CML, ABL TKI resistance is frequently caused by ABL kinase domain mutations. The T315I mutation is resistant to all ABL TKIs except ponatinib. Although axitinib, which is currently being investigated for efficacy in patients with Ph-positive T315I-mutant leukemia, induced apoptosis in T315I-mutant cells, it was ineffective against cells with a compound mutation including T315I. Current evidence to direct the management of ABL TKI-resistant disease, particularly those harboring T315I and compound mutations, is limited. New molecular-targeted drugs and an understanding of ABL TKI resistance mechanisms are required to apply an appropriate therapeutic approach. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2007
    In:  International Journal of Hematology Vol. 86, No. 3 ( 2007-6), p. 207-207
    In: International Journal of Hematology, Springer Science and Business Media LLC, Vol. 86, No. 3 ( 2007-6), p. 207-207
    Type of Medium: Online Resource
    ISSN: 0925-5710 , 1865-3774
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2007
    detail.hit.zdb_id: 2028991-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3737-3737
    Abstract: Abstract 3737 ABL kinase inhibitor, imatinib is highly effective therapy against chronic myeloid leukemia (CML) patients and eliminates disease progression and transformation. However, imatinib is not curative for most CML patients. Residual CML cells are present in bone marrow microenvironment. Bone marrow microenvironment is a source of soluble factors and regulates the proliferation of leukemia cells. These leukemia cells are contained within a niche in the bone marrow and are often impervious to current treatments, thus maintaining their proliferative activity when the treatment is ceased, suggests that the new therapeutic strategies designed to override stroma-associated drug resistance are required to treat against Philadelphia (Ph)-positive leukemia patients. The hematopoietic cytokine receptor signaling is mediated by tyrosine kinases termed Janus kinases (Jaks) and downstream transcription factors, signal transducers and activators of transcription (STATs). Jak-STAT signaling is also activated in CML cells. One of the Jak kinase inhibitor, TG101348 (SAR302503) is an orally available inhibitor of Jak2 and developed for the treatment of patients with myeloproliferative diseases. Therefore, combination therapy using a BCR-ABL tyrosine kinase inhibitors and a Jak inhibitor, TG101348 may help prevent stroma-associated drug resistance and these approaches may be expected to improve the outcomes of CML patients. In this study, we investigated the ABL tyrosine kinase inhibitor, imatinib and TG101348 efficacy by using the BCR-ABL positive cell lines, K562 and primary CML samples when leukemic cells were protected by the feeder cell lines (HS-5 and S9). 72 hours treatment of imatinib exhibits cell growth inhibition and induced apoptosis against K562 cells in a dose dependent manner. However, the treatment of imatinib exhibits cell growth inhibition partially against K562 cells in the presence of HS-5 conditioned media. We found that the treatment of TG101348 did not exhibit cell growth inhibition against K562 cells directly, but the combination treatment with imatinib and TG101348 abrogated the protective effects of HS-5 conditioned media in K562 cells. We next investigated the intracellular signaling of imatinib and TG101348. Phosphorylation of BCR-ABL, Crk-L was not reduced after TG101348 treatment. However, phosphorylation of BCR-ABL, Crk-L was significantly reduced and increased apoptosis after combination treatment with imatinib and TG101348. We next investigated the efficacy between imatinib and TG101348 by using CD34 positive primary CML samples. The treatment of imatinib exhibits cell growth inhibition partially against CD34 positive CML samples in the presence of feeder cells. Combined treatment of CD34 positive primary samples with imatinib and TG101348 caused significantly more cytotoxicity and induced apoptosis. We also found that mitogen-activated protein kinase (MAPK) was also inhibited by imatinib and TG101348 treatment. We next investigated the intracellular signaling of imatinib and TG101348 by using the CD34 positive primary samples. Phosphorylation of BCR-ABL, Crk-L was significantly reduced and increased apoptosis after treatment with imatinib and TG101348. Moreover, combination of imatinib and TG101348 inhibited the colony growth of Ph-positive primary samples. We also investigated the TG101348 activity against feeder cell. Phosphorylation of STAT5 was reduced by TG101348 in a dose dependent manner. The cytokine production was analyzed by using cytokine array systems. The cytokine production such as granulocyte macrophage colony-stimulating factor (GM-CSF) from HS-5 was also reduced by TG101348 treatment. Data from this study suggested that administration of the imatinib and Jak inhibitor, TG101348 may be a powerful strategy against stroma-associated drug resistance of Ph-positive cells and enhance cytotoxic effects of imatinib in those residual CML cells. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...