GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Springer Science and Business Media LLC  (6)
  • Tan, Guowei  (6)
Material
Publisher
  • Springer Science and Business Media LLC  (6)
Language
Years
  • 1
    In: Cell Death & Disease, Springer Science and Business Media LLC, Vol. 14, No. 1 ( 2023-01-09)
    Abstract: Glioblastoma multiforme (GBM) is the most lethal primary brain tumor with a poor median survival of less than 15 months. However, clinical strategies and effective therapies are limited. Here, we found that the second-generation small molecule multi-CDK inhibitor AT7519 is a potential drug for GBM treatment according to high-throughput screening via the Approved Drug Library and Clinical Compound Library (2718 compounds). We found that AT7519 significantly inhibited the cell viability and proliferation of U87MG, U251, and patient-derived primary GBM cells in a dose-dependent manner. Furthermore, AT7519 also inhibited the phosphorylation of CDK1/2 and arrested the cell cycle at the G1-S and G2-M phases. More importantly, AT7519 induced intrinsic apoptosis and pyroptosis via caspase-3-mediated cleavage of gasdermin E (GSDME). In the glioblastoma intracranial and subcutaneous xenograft assays, tumor volume was significantly reduced after treatment with AT7519. In summary, AT7519 induces cell death through multiple pathways and inhibits glioblastoma growth, indicating that AT7519 is a potential chemical available for GBM treatment.
    Type of Medium: Online Resource
    ISSN: 2041-4889
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2541626-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BMC Oral Health, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-09-23)
    Abstract: Although chronic periodontitis has previously been reported to be linked with Alzheimer's disease (AD), the pathogenesis between the two is unclear. The purpose of this study is to analyze and screen the relevant and promising molecular markers between chronic periodontitis and Alzheimer's disease (AD). Methods In this paper, we analyzed three AD expression datasets and extracted differentially expressed genes (DEGs), then intersected them with chronic periodontitis genes obtained from text mining, and finally obtained integrated DEGs. We followed that by enriching the matching the matching cell signal cascade through DAVID analysis. Moreover, the MCODE of Cytoscape software was employed to uncover the protein–protein interaction (PPI) network and the matching hub gene. Finally, we verified our data using a different independent AD cohort. Results The chronic periodontitis gene set acquired from text abstracting was intersected with the previously obtained three AD groups, and 12 common genes were obtained. Functional enrichment assessment uncovered 12 cross-genes, which were mainly linked to cell morphogenesis involved in neuron differentiation, leading edge membrane, and receptor ligand activity. After PPI network creation, the ten hub genes linked to AD were retrieved, consisting of SPP1, THY1, CD44, ITGB1, HSPB3, CREB1, SST, UCHL1, CCL5 and BMP7. Finally, the function terms in the new independent dataset were used to verify the previous dataset, and we found 22 GO terms and one pathway, "ECM-receptor interaction pathways", in the overlapping functional terms. Conclusions The establishment of the above-mentioned candidate key genes, as well as the enriched signaling cascades, provides promising molecular markers for chronic periodontitis-related AD, which may help the diagnosis and treatment of AD patients in the future.
    Type of Medium: Online Resource
    ISSN: 1472-6831
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2091511-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2012
    In:  BMC Neuroscience Vol. 13, No. 1 ( 2012-12)
    In: BMC Neuroscience, Springer Science and Business Media LLC, Vol. 13, No. 1 ( 2012-12)
    Abstract: Reactive gliosis had been implicated in injury and recovery patterns associated with hydrocephalus. Our aim is to determine the efficacy of minocycline, an antibiotic known for its anti-inflammatory properties, to reduce reactive gliosis and inhibit the development of hydrocephalus. Results The ventricular dilatation were evaluated by MRI at 1-week post drugs treated, while GFAP and Iba-1were detected by RT-PCR, Immunohistochemistry and Western blot. The expression of GFAP and Iba-1 was significantly higher in hydrocephalic group compared with saline control group (p 〈 0.05 ). Minocycline treatment of hydrocephalic animals reduced the expression of GFAP and Iba-1 significantly ( p 〈 0.05 ). Likewise, the severity of ventricular dilatation is lower in minocycline treated hydrocephalic animals compared with the no minocycline group ( p 〈 0.05 ). Conclusion Minocycline treatment is effective in reducing the gliosis and delaying the development of hydrocephalus with prospective to be the auxiliary therapeutic method of hydrocephalus.
    Type of Medium: Online Resource
    ISSN: 1471-2202
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2041344-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  BMC Medical Genomics Vol. 16, No. 1 ( 2023-02-08)
    In: BMC Medical Genomics, Springer Science and Business Media LLC, Vol. 16, No. 1 ( 2023-02-08)
    Abstract: The circular RNA (circRNA) plays a vital role in the pathogenesis of tumors as a competitive endogenous RNA (ceRNA). Given the high aggressiveness and fatality rate of glioblastoma (GBM) as well as poor prognosis, it is necessary to construct a circRNA-related ceRNA network for further studies on the mechanism of GBM and identify possible biomarkers as well as therapeutic drugs. Methods Three datasets from the gene expression omnibus (GEO) database were downloaded to distinguish differential circRNAs, microRNAs, and messenger RNAs respectively in GBM. With the help of GEPIA2, circBank, CSCD, TargetScan, miRDB, and miRTarBase databases, we established a circRNAs-related ceRNA network in GBM. Functional enrichments were employed to profile the most relevant mRNAs to indirectly clarify the mechanisms of the ceRNA network. Based on the expression profile data and survival information of GBM patients from the GEO and the cancer genome atlas (TCGA) databases, we performed survival analysis to select prognostic mRNAs and constructed a novel circRNA-miRNA-mRNA central regulatory subnetwork. The DGIdb database was used to find potential drug–gene interactions. Results The datasets obtained from the GEO and TCGA databases were analyzed, and 504 differentially expressed mRNAs (DEmRNAs), 71 differentially expressed microRNAs (DEmiRNAs), and 270 differentially expressed circRNAs (DEcircRNAs) were screened out. The novel ceRNA regulatory network included 22 circRNAs, 11 miRNAs, and 15 mRNAs. FZD1 and KLF10 were significantly correlated with the overall survival rate of patients with GBM ( P   〈  0.05). The final survival subnetwork contained six circRNAs, two miRNAs, and two mRNAs. Two small-molecule compounds and one antibody could be used as therapeutic drugs for GBM. Interestingly, the Wnt signaling pathway appeared in both KEGG and GO functional terms. Conclusions Results of this study demonstrate that FZD1 and KLF10 may exert regulatory functions in GBM, and the ceRNA-mediated network could be a therapeutic strategy for GBM.
    Type of Medium: Online Resource
    ISSN: 1755-8794
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2411865-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-04-19)
    Abstract: Glioblastoma (GBM) patients present poor prognosis. Deubiquitination by deubiquitinating enzymes (DUBs) is a critical process in cancer progression. Ubiquitin-specific proteases (USPs) constitute the largest sub-family of DUBs. Evaluate the role of USP32 in GBM progression and provide a potential target for GBM treatment. Clinical significance of USP32 was investigated using Gene Expression Omnibus databases. Effects of USP32 on cell growth and metastasis were studied in vitro and in vivo. Differentially expressive genes between USP32-knockdown U-87 MG cells and negative control cells were detected using RNA sequencing and used for Gene Ontology and Kyoto Encyclopedia of Genes and Genomic pathway enrichment analyses. Finally, RT-qPCR was used to validate the divergent expression of genes involved in the enriched pathways. USP32 was upregulated in GBM patients, being correlated to poor prognosis. USP32 downregulation inhibited cell growth and metastasis in vitro. Furthermore, USP32 knockdown inhibited tumorigenesis in vivo. In addition, UPS32 was identified as a crucial regulator in different pathways including cell cycle, cellular senescence, DNA replication, base excision repair, and mismatch repair pathways. USP32 acts as an oncogene in GBM through regulating several biological processes/pathways. It could be a potential target for GBM treatment.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Journal of Neuro-Oncology Vol. 133, No. 1 ( 2017-5), p. 147-154
    In: Journal of Neuro-Oncology, Springer Science and Business Media LLC, Vol. 133, No. 1 ( 2017-5), p. 147-154
    Type of Medium: Online Resource
    ISSN: 0167-594X , 1573-7373
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 604875-4
    detail.hit.zdb_id: 2007293-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...