GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The Endocrine Society  (1)
  • Takeno, Ayumu  (1)
Material
Publisher
  • The Endocrine Society  (1)
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    The Endocrine Society ; 2018
    In:  Endocrinology Vol. 159, No. 2 ( 2018-02-01), p. 597-608
    In: Endocrinology, The Endocrine Society, Vol. 159, No. 2 ( 2018-02-01), p. 597-608
    Abstract: Studies have shown that AMP-activated protein kinase (AMPK), a crucial regulator of energy homeostasis, plays important roles in osteoblast differentiation and mineralization. However, little is known about in vivo roles of osteoblastic AMPK in bone development. Thus, to investigate in vivo roles of osteoblast AMPK, we conditionally inactivated Ampk in osterix (Osx)–expressing cells by crossing Osx-Cre mice with floxed AMPKα1 to generate mice lacking AMPKα1 in osteoblasts (Ampk−/− mice). Compared with wild-type and Ampk+/− mice, Ampk−/− mice displayed retardation of postnatal bone development, although bone deformity was not observed at birth. Microcomputed tomography showed significant reductions in trabecular bone volume, cortical bone length, and density, as well as increased cortical porosity in femur as well as development defects of skull in 8-week-old Ampk−/− mice. Surprisingly, histomorphometric analysis demonstrated that the number of osteoclasts was significantly increased, although bone formation rate was not altered. Loss of trabecular network connections and mass, as well as shortened growth plates and reduced thickness of cartilage adjacent to the growth plate, was observed in Ampk−/− mice. In primary cultured osteoblasts from calvaria, the expressions of alkaline phosphatase, type 1 collagen, osteocalcin, bone morphogenetic protein 2, Runx2, and osterix were significantly inhibited in Ampk−/− osteoblasts, whereas the expression of receptor activator of nuclear κB ligand (RANKL) and the RANKL/osteoprotegerin ratio were significantly increased. These findings indicate that osteoblastic AMPK plays important roles in bone development in vivo and that deletion of AMPK in osteoblasts decreases osteoblastic differentiation and enhances bone turnover by increasing RANKL expression.
    Type of Medium: Online Resource
    ISSN: 1945-7170
    Language: English
    Publisher: The Endocrine Society
    Publication Date: 2018
    detail.hit.zdb_id: 2011695-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...