GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 522, No. 4 ( 2023-05-11), p. 6236-6249
    Abstract: We present an interstellar medium and stellar population analysis of three spectroscopically confirmed z & gt; 7 galaxies in the Early Release Observations JWST/NIRCam and JWST/NIRSpec data of the SMACS J0723.3−7327 cluster. We use the Bayesian spectral energy distribution-fitting code prospector with a flexible star formation history (SFH), a variable dust attenuation law, and a self-consistent model of nebular emission (continuum and emission lines). Importantly, we self-consistently fit both the emission line fluxes from JWST/NIRSpec and the broad-band photometry from JWST/NIRCam, taking into account slit-loss effects. We find that these three z=7.6–8.5 galaxies (M⋆ ≈ 108 M⊙) are young with rising SFHs and mass-weighted ages of 3–4 Myr, though we find indications for underlying older stellar populations. The inferred gas-phase metallicities broadly agree with the direct metallicity estimates from the auroral lines. The galaxy with the lowest gas-phase metallicity (Zgas= 0.06 Z⊙) has a steeply rising SFH, is very compact ( & lt;0.2 kpc), and has a high star formation rate surface density (ΣSFR ≈ 22 M⊙ yr−1 kpc−2), consistent with rapid gas accretion. The two other objects with higher gas-phase metallicities show more complex multicomponent morphologies on kpc scales, indicating that their recent increase in star formation rate is driven by mergers or internal, gravitational instabilities. We discuss effects of assuming different SFH priors or only fitting the photometric data. Our analysis highlights the strength and importance of combining JWST imaging and spectroscopy for fully assessing the nature of galaxies at the earliest epochs.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2017
    In:  Monthly Notices of the Royal Astronomical Society Vol. 464, No. 1 ( 2017-01-01), p. 1077-1094
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 464, No. 1 ( 2017-01-01), p. 1077-1094
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 491, No. 3 ( 2020-01-21), p. 4089-4107
    Abstract: We have obtained data for 41 star forming galaxies in the MUSE Atlas of Discs (MAD) survey with VLT/MUSE. These data allow us, at high resolution of a few 100 pc, to extract ionized gas kinematics (V, σ) of the centres of nearby star forming galaxies spanning 3  dex in stellar mass. This paper outlines the methodology for measuring the ionized gas kinematics, which we will use in subsequent papers of this survey. We also show how the maps can be used to study the kinematics of diffuse ionized gas for galaxies of various inclinations and masses. Using two different methods to identify the diffuse ionized gas, we measure rotation velocities of this gas for a subsample of six galaxies. We find that the diffuse ionized gas rotates on average slower than the star forming gas with lags of 0–10 km s−1 while also having higher velocity dispersion. The magnitude of these lags is on average 5 km s−1 lower than observed velocity lags between ionized and molecular gas. Using Jeans models to interpret the lags in rotation velocity and the increase in velocity dispersion we show that most of the diffuse ionized gas kinematics are consistent with its emission originating from a somewhat thicker layer than the star forming gas, with a scale height that is lower than that of the stellar disc.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2020
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 487, No. 2 ( 2019-08-01), p. 1529-1550
    Abstract: We have recently developed a post-processing framework to estimate the abundance of atomic and molecular hydrogen (H i and H2, respectively) in galaxies in large-volume cosmological simulations. Here we compare the H i and H2 content of IllustrisTNG galaxies to observations. We mostly restrict this comparison to z ≈ 0 and consider six observational metrics: the overall abundance of H i and H2, their mass functions, gas fractions as a function of stellar mass, the correlation between H2 and star formation rate, the spatial distribution of gas, and the correlation between gas content and morphology. We find generally good agreement between simulations and observations, particularly for the gas fractions and the H i mass–size relation. The H2 mass correlates with star formation rate as expected, revealing an almost constant depletion time that evolves up to z = 2 as observed. However, we also discover a number of tensions with varying degrees of significance, including an overestimate of the total neutral gas abundance at z = 0 by about a factor of 2 and a possible excess of satellites with no or very little neutral gas. These conclusions are robust to the modelling of the H i/H2 transition. In terms of their neutral gas properties, the IllustrisTNG simulations represent an enormous improvement over the original Illustris run. All data used in this paper are publicly available as part of the IllustrisTNG data release.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP), Vol. 487, No. 4 ( 2019-08-21), p. 5416-5440
    Abstract: Using the IllustrisTNG simulations, we investigate the connection between galaxy morphology and star formation in central galaxies with stellar masses in the range 109–1011.5 M⊙. We quantify galaxy morphology by a kinematical decomposition of the stellar component into a spheroidal and a disc component (spheroid-to-total ratio, S/T) and by the concentration of the stellar mass density profile (C82). S/T is correlated with stellar mass and star formation activity, while C82 correlates only with stellar mass. Overall, we find good agreement with observational estimates for both S/T and C82. Low- and high-mass galaxies are dominated by random stellar motion, while only intermediate-mass galaxies (M⋆ ≈ 1010–1010.5 M⊙) are dominated by ordered rotation. Whereas higher mass galaxies are typical spheroids with high concentrations, lower mass galaxies have low concentration, pointing to different formation channels. Although we find a correlation between S/T and star formation activity, in the TNG model galaxies do not necessarily change their morphology when they transition through the green valley or when they cease their star formation, this depending on galaxy stellar mass and morphological estimator. Instead, the morphology (S/T and C82) is generally set during the star-forming phase of galaxies. The apparent correlation between S/T and star formation arises because earlier forming galaxies had, on average, a higher S/T at a given stellar mass. Furthermore, we show that mergers drive in situ bulge formation in intermediate-mass galaxies and are responsible for the recent spheroidal mass assembly in the massive galaxies with M⋆ & gt; 1011 M⊙. In particular, these massive galaxies assemble about half of the spheroidal mass while star-forming and the other half through mergers while quiescent.
    Type of Medium: Online Resource
    ISSN: 0035-8711 , 1365-2966
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2016084-7
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2017
    In:  Nature Astronomy Vol. 1, No. 6 ( 2017-05-26)
    In: Nature Astronomy, Springer Science and Business Media LLC, Vol. 1, No. 6 ( 2017-05-26)
    Type of Medium: Online Resource
    ISSN: 2397-3366
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 2879712-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 678 ( 2023-10), p. A83-
    Abstract: Aims. We study the stellar (i.e., rest-optical) and dust-obscured star-forming (i.e., rest-mid-infrared) morphologies (i.e., sizes and Sérsic indices) of star-forming galaxies (SFGs) at 0.1  〈   z   〈  2.5. Methods. We combined Hubble Space Telescope (HST) images from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) with JWST images from the Cosmic Evolution Early Release Science (CEERS) survey to measure the stellar and dust-obscured star formation distributions of 69 SFGs. Rest-mid-infrared (rest-MIR) morphologies were determined using a Markov chain Monte Carlo (MCMC) approach applied to the sharpest Mid-InfraRed Instrument (MIRI) images (i.e., shortest wavelength) dominated by dust emission ( S ν dust / S ν total   〉  75%), as inferred for each galaxy from our optical-to-far-infrared spectral energy distribution fits with CIGALE . Rest-MIR Sérsic indices were only measured for the brightest MIRI sources, that is, with a signal-to-noise (S/N) greater than 75 (35 galaxies). At a lower S/N, simulations do indeed show that simultaneous measurements of both the size and Sérsic index become less reliable. We extended our study to fainter sources (i.e., S / N   〉  10; 69 galaxies) by restricting our structural analysis to their rest-MIR sizes ( Re MIR ) and by fixing their Sérsic index to a value of one. Results. Our MIRI-selected sample corresponds to a mass-complete sample ( 〉 80%) of SFGs down to stellar masses 10 9.5 , 10 9.5 , and 10 10   M ⊙ at z  ∼ 0.3, 1, and 2, respectively. The rest-MIR Sérsic index of bright galaxies ( S / N   〉  75) has a median value of 0.7 −0.3 +0.8 (the range corresponds to the 16th and 84th percentiles), which is in good agreement with their median rest-optical Sérsic indices. The Sérsic indices as well as the distribution of the axis ratio of these galaxies suggest that they have a disk-like morphology in the rest-MIR. Galaxies above the main sequence (MS) of star formation (i.e., starbursts) have rest-MIR sizes that are, on average, a factor ∼2 smaller than their rest-optical sizes ( Re Opt. ). The median rest-optical to rest-MIR size ratio of MS galaxies increases with their stellar mass, from 1.1 −0.2 +0.4 at ∼10 9.8   M ⊙ to 1.6 −0.3 +1.0 at ∼10 11   M ⊙ . This mass-dependent trend resembles the one found in the literature between the rest-optical and rest-near-infrared sizes of SFGs, suggesting that it is primarily due to radial color gradients affecting rest-optical sizes and that the sizes of the stellar and star-forming components of SFGs are, on average, consistent at all masses. There is, however, a small population of SFGs (∼15%) with a compact star-forming component embedded in a larger stellar structure, with Re Opt. c 〉 1.8 × Re MIR . This population could be the missing link between galaxies with an extended stellar component and those with a compact stellar component, the so-called blue nuggets.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 678 ( 2023-10), p. A68-
    Abstract: We report the discovery of a remarkable Ly α emitting galaxy at z  = 7.2782, JADES-GS+53.16746−27.7720 (shortened to JADES-GS-z7-LA), with rest-frame equivalent width, EW 0 (Ly α ) = 388.0 ± 88.8 Å and UV magnitude −17.0. The spectroscopic redshift is confirmed via rest-frame optical lines [O  II ], H β and [O  III ] in its JWST/NIRSpec Micro-Shutter Assembly (MSA) spectrum. The Ly α line is detected in both lower resolution ( R  ∼ 100) PRISM as well as medium resolution ( R  ∼ 1000) G 140 M grating spectra. The line spread function-deconvolved Ly α full width at half maximum in the grating is 383.9 ± 56.2 km s −1 and the Ly α velocity offset compared to the systemic redshift is 113.3 ± 80.0 km s −1 , indicative of very little neutral gas or dust within the galaxy. We estimate the Ly α escape fraction to be 〉 70%. JADES-GS-z7-LA has a [O  III ]/[O  II ] ratio (O32) of 11.1 ± 2.2 and a ([O  III ] + [O  II ])/H β ratio (R23) of 11.2 ± 2.6, consistent with low metallicity and high ionization parameters. Deep NIRCam imaging also revealed a close companion source (separated by 0.23″), which exhibits similar photometry to that of JADES-GS-z7-LA, with a photometric excess in the F 410 M NIRCam image consistent with [O  III ] + H β emission at the same redshift. The spectral energy distribution of JADES-GS-z7-LA indicates a “bursty” star formation history, with a low stellar mass of ≈10 7   M ⊙ . Assuming that the Ly α transmission through the intergalactic medium is the same as its measured escape fraction, an ionized region of size 〉 1.5 pMpc is needed to explain the high Ly α EW and low velocity offset compared to systemic seen in JADES-GS-z7-LA. Owing to its UV-faintness, we show that it is incapable of single-handedly ionizing a region large enough to explain its Ly α emission. Therefore, we suggest that JADES-GS-z7-LA (and possibly the companion source) may be a part of a larger overdensity, presenting direct evidence of overlapping ionized bubbles at z   〉  7.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Astronomy & Astrophysics, EDP Sciences, Vol. 677 ( 2023-09), p. A34-
    Abstract: In recent years, observations have uncovered a population of massive galaxies that are invisible or very faint in deep optical/near-infrared (near-IR) surveys but brighter at longer wavelengths. However, the nature of these optically dark or faint galaxies (OFGs; one of several names given to these objects) is highly uncertain. In this work, we investigate the drivers of dust attenuation in the JWST era. In particular, we study the role of stellar mass, size, and orientation in obscuring star-forming galaxies (SFGs) at 3  〈   z   〈  7.5, focusing on the question of why OFGs and similar galaxies are so faint at optical/near-IR wavelengths. We find that stellar mass is the primary proxy for dust attenuation, among the properties studied. Effective radius and axis ratio do not show a clear link with dust attenuation, with the effect of orientation being close to random. However, there is a subset of highly dust attenuated ( A V   〉  1, typically) SFGs, of which OFGs are a specific case. For this subset, we find that the key distinctive feature is their compact size (for massive systems with log( M * / M ⊙ ) 〉 10); OFGs exhibit a 30% smaller effective radius than the average SFG at the same stellar mass and redshift. On the contrary, OFGs do not exhibit a preference for low axis ratios (i.e., edge-on disks). The results in this work show that stellar mass is the primary proxy for dust attenuation and compact stellar light profiles behind the thick dust columns obscuring typical massive SFGs.
    Type of Medium: Online Resource
    ISSN: 0004-6361 , 1432-0746
    RVK:
    RVK:
    Language: English
    Publisher: EDP Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 1458466-9
    SSG: 16,12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: The Astrophysical Journal Letters, American Astronomical Society, Vol. 940, No. 2 ( 2022-12-01), p. L55-
    Abstract: We report the discovery of a candidate galaxy with a photo- z of z ∼ 12 in the first epoch of the James Webb Space Telescope (JWST) Cosmic Evolution Early Release Science Survey. Following conservative selection criteria, we identify a source with a robust z phot = 11.8 − 0.2 + 0.3 (1 σ uncertainty) with m F200W = 27.3 and ≳7 σ detections in five filters. The source is not detected at λ 〈 1.4 μ m in deep imaging from both Hubble Space Telescope (HST) and JWST and has faint ∼3 σ detections in JWST F150W and HST F160W, which signal a Ly α break near the red edge of both filters, implying z ∼ 12. This object (Maisie’s Galaxy) exhibits F115W − F200W 〉 1.9 mag (2 σ lower limit) with a blue continuum slope, resulting in 99.6% of the photo- z probability distribution function favoring z 〉 11. All data-quality images show no artifacts at the candidate’s position, and independent analyses consistently find a strong preference for z 〉 11. Its colors are inconsistent with Galactic stars, and it is resolved ( r h = 340 ± 14 pc). Maisie’s Galaxy has log M * / M ⊙ ∼ 8.5 and is highly star-forming (log sSFR ∼ −8.2 yr −1 ), with a blue rest-UV color ( β ∼ −2.5) indicating little dust, though not extremely low metallicity. While the presence of this source is in tension with most predictions, it agrees with empirical extrapolations assuming UV luminosity functions that smoothly decline with increasing redshift. Should follow-up spectroscopy validate this redshift, our universe was already aglow with galaxies less than 400 Myr after the Big Bang.
    Type of Medium: Online Resource
    ISSN: 2041-8205 , 2041-8213
    Language: Unknown
    Publisher: American Astronomical Society
    Publication Date: 2022
    detail.hit.zdb_id: 2207648-7
    detail.hit.zdb_id: 2006858-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...