GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Sun, Yingfeng  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Sustainability Vol. 15, No. 2 ( 2023-01-04), p. 942-
    In: Sustainability, MDPI AG, Vol. 15, No. 2 ( 2023-01-04), p. 942-
    Abstract: Gas drainage is an important technology to prevent coal and gas outburst, and the drained gas is a kind of clean energy. The gas pressure can characterize gas drainage effectiveness. In this paper, we investigated the effectiveness of gas drainage by gas pressure. Determined by the space shape of the gas flow field, the gas flow state surrounding the drainage boreholes is radial flow. According to the basic equations of radial flow, discrete equations were achieved by the implicit difference scheme, and then we obtained the gas pressure surrounding the drainage boreholes. Results showed that the midpoint between two holes presents the highest gas pressure, and gas pressure declined from the midpoint of two boreholes to both sides. The midpoint gas pressure of the two holes reflects gas drainage effectiveness in a certain degree. Gas pressure declined with segmented characteristics in the first period decline curve in the form of a cubic curve, and the second period decline curve in the form of a straight line. When the drainage pressure reaches a certain value, the decline rate of gas pressure had little relationship with the drainage negative pressure, mainly influenced by the permeability coefficient. To improve the drainage effectiveness, anti-reflection measures are feasible, instead of increasing the drainage negative pressure. Moreover, the conclusion was verified by field data.
    Type of Medium: Online Resource
    ISSN: 2071-1050
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2518383-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Pathogens, MDPI AG, Vol. 10, No. 6 ( 2021-05-28), p. 664-
    Abstract: Infectious bursal disease virus (IBDV) infection causes pathogenicity and mortality in chickens, leading to huge economic losses in the poultry industry worldwide. Studies of host-virus interaction can help us to better understand the viral pathogenicity. As a highly conservative host factor, heat shock protein 70 (Hsp70) is observed to be involved in numerous viral infections. However, there is little information about the role of chicken Hsp70 (cHsp70) in IBDV infection. In the present study, the increased expression of cHsp70 was observed during IBDV-infected DF-1 cells. Further studies revealed that Hsp70 had similar locations with the viral double-stranded RNA (dsRNA), and the result of pull-down assay showed the direct interaction between cHsp70 with dsRNA, viral proteins (vp)2 and 3, indicating that maybe cHsp70 participates in the formation of the replication and transcription complex. Furthermore, overexpression of cHsp70 promoted IBDV production and knockdown of cHsp70 using small interfering RNAs (siRNA) and reducedviral production, implying the necessity of cHsp70 in IBDV infection. These results reveal that cHsp70 is essential for IBDV infection in DF-1 cells, suggesting that targeting cHsp70 may be applied as an antiviral strategy.
    Type of Medium: Online Resource
    ISSN: 2076-0817
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2695572-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...