GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 4 ( 2008-01-29), p. 1309-1314
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 4 ( 2008-01-29), p. 1309-1314
    Abstract: The neural mechanisms through which the state of anesthesia arises and dissipates remain unknown. One common belief is that emergence from anesthesia is the inverse process of induction, brought about by elimination of anesthetic drugs from their CNS site(s) of action. Anesthetic-induced unconsciousness may result from specific interactions of anesthetics with the neural circuits regulating sleep and wakefulness. Orexinergic agonists and antagonists have the potential to alter the stability of the anesthetized state. In this report, we refine the role of the endogenous orexin system in impacting emergence from, but not entry into the anesthetized state, and in doing so, we distinguish mechanisms of induction from those of emergence. We demonstrate that isoflurane and sevoflurane, two commonly used general anesthetics, inhibit c-Fos expression in orexinergic but not adjacent melanin-concentrating hormone (MCH) neurons; suggesting that wake-active orexinergic neurons are inhibited by these anesthetics. Genetic ablation of orexinergic neurons, which causes acquired murine narcolepsy, delays emergence from anesthesia, without changing anesthetic induction. Pharmacologic studies with a selective orexin-1 receptor antagonist confirm a specific orexin effect on anesthetic emergence without an associated change in induction. We conclude that there are important differences in the neural substrates mediating induction and emergence. These findings support the concept that emergence depends, in part, on recruitment and stabilization of wake-active regions of brain.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 14 ( 2016-04-05)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 14 ( 2016-04-05)
    Abstract: Cullin-RING E3 ubiquitin ligases (CRL) control a myriad of biological processes by directing numerous protein substrates for proteasomal degradation. Key to CRL activity is the recruitment of the E2 ubiquitin-conjugating enzyme Cdc34 through electrostatic interactions between E3′s cullin conserved basic canyon and the acidic C terminus of the E2 enzyme. This report demonstrates that a small-molecule compound, suramin, can inhibit CRL activity by disrupting its ability to recruit Cdc34. Suramin, an antitrypansomal drug that also possesses antitumor activity, was identified here through a fluorescence-based high-throughput screen as an inhibitor of ubiquitination. Suramin was shown to target cullin 1’s conserved basic canyon and to block its binding to Cdc34. Suramin inhibits the activity of a variety of CRL complexes containing cullin 2, 3, and 4A. When introduced into cells, suramin induced accumulation of CRL substrates. These observations help develop a strategy of regulating ubiquitination by targeting an E2–E3 interface through small-molecule modulators.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Biochemical and Biophysical Research Communications Vol. 503, No. 4 ( 2018-09), p. 2625-2632
    In: Biochemical and Biophysical Research Communications, Elsevier BV, Vol. 503, No. 4 ( 2018-09), p. 2625-2632
    Type of Medium: Online Resource
    ISSN: 0006-291X
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1461396-7
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...