GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (3)
  • Sun, Ye  (3)
Material
Publisher
  • MDPI AG  (3)
Language
Years
  • 1
    In: Agronomy, MDPI AG, Vol. 13, No. 3 ( 2023-03-21), p. 933-
    Abstract: Obtaining complete and consistent spectral images of wheat ears in the visible areas of in situ wheat canopies poses a significant challenge due to the varying growth posture of wheat. Nevertheless, detecting the presence and degree of wheat Fusarium head blight (FHB) in situ is critical for formulating measures that ensure stable grain production and supply while promoting green development in agriculture. In this study, a spectral quantitative analysis model was developed to evaluate the infection degree of FHB in an in situ wheat canopy’s visible areas. To achieve this, a spectral acquisition method was used to evaluate the infection degree of FHB in a wheat canopy’s visible areas. Hyperspectral images were utilized to obtain spectral data from healthy and mildly, moderately, and severely infected wheat ear canopies. The spectral data were preprocessed, and characteristic wavelengths were extracted using twelve types of spectral preprocessing methods and four types of characteristic wavelength extraction methods. Subsequently, sixty-five spectral quantitative prediction models for the infection degree of FHB in the in situ wheat canopy visible areas were established using the PLSR method, based on the original spectral data, preprocessed spectral data, original spectral characteristic wavelengths extracted data, and preprocessed spectral characteristic wavelengths extracted data. Comparative analysis of the models indicated that the MMS + CARS + PLSR model exhibited the best prediction effect and could serve as the spectral quantitative analysis model for the evaluation of the infection degree of FHB in an in situ wheat canopy’s visible areas. The model extracted thirty-five characteristic wavelengths, with a modeling set coefficient of determination (R2) of 0.9490 and a root-mean-square error (RMSE) of 0.2384. The testing set of the coefficient of determination (R2) was 0.9312, with a root-mean-square error (RMSE) of 0.2588. The model can facilitate the spectral quantitative analysis of the infection degree of FHB in the in situ wheat canopy visible areas, thereby aiding in the implementation of China’s targeted poverty alleviation and agricultural power strategy.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 18 ( 2020-09-08), p. 5120-
    In: Sensors, MDPI AG, Vol. 20, No. 18 ( 2020-09-08), p. 5120-
    Abstract: This paper reports the nondestructive detection of apple varieties using a multichannel hyperspectral imaging system consisting of an illumination fiber and 30 detection fibers arranged at source–detector distances of 1.5–36 mm over the spectral range of 550–1650 nm. Spatially resolved (SR) spectra were obtained for 1500 apples, 500 each of three varieties from the same orchard to avoid environmental and geographical influences. Partial least squares discriminant analysis (PLSDA) models were developed for single SR spectra and spectral combinations to compare their performance of variety detection. To evaluate the effect of spectral range on variety detection, three types of spectra (i.e., visible region: 550–780 nm, near-infrared region: 780–1650 nm, full region: 550–1650 nm) were analyzed and compared. The results showed that the single SR spectra presented a different accuracy for apple variety classification, and the optimal SR spectra varied with spectral types. Spectral combinations had better accuracies for variety detection with best overall classifications of 99.4% for both spectral ranges in the NIR and full regions; however, the spectral combination could not improve the results over the optimal single SR spectra in the visible region. Moreover, the recognition of golden delicious (GD) was better than those of the other two varieties, with the best classification accuracy of 100% for three types of spectra. Overall, the multichannel hyperspectral imaging system provides more spatial-spectral information for the apples, and the results demonstrate that the technique gave excellent classifications, which suggests that the multichannel hyperspectral imaging system has potential for apple variety detection.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Sensors Vol. 20, No. 20 ( 2020-10-13), p. 5783-
    In: Sensors, MDPI AG, Vol. 20, No. 20 ( 2020-10-13), p. 5783-
    Abstract: Blueberries, which are rich in nutrition, are susceptible to fungal infection during postharvest or storage. However, early detection of diseases in blueberry is challenging because of their opaque appearance and the inconspicuousness of spots in the early stage of disease. The goal of this study was to investigate the potential of hyperspectral imaging over the spectral range of 400–1000 nm to discriminate early disease in blueberries. Scanning electron microscope observation verified that fungal damage to the cellular structure takes place during the early stages. A total of 400 hyperspectral images, 200 samples each of healthy and early disease groups, were collected to obtain mean spectra of each blueberry samples. Spectral correlation analysis was performed to select an effective spectral range. Partial least square discrimination analysis (PLSDA) models were developed using two types of spectral range (i.e., full wavelength range of 400–1000 nm and effective spectral range of 685–1000 nm). The results showed that the effective spectral range made it possible to provide better classification results due to the elimination of the influence of irrelevant variables. Moreover, the effective spectral range combined with an autoscale preprocessing method was able to obtain optimal classification accuracies, with recognition rates of 100% and 99% for healthy and early disease blueberries. This study demonstrated that it is feasible to use hyperspectral imaging to measure early disease blueberries.
    Type of Medium: Online Resource
    ISSN: 1424-8220
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2052857-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...