GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Lipids in Health and Disease, Springer Science and Business Media LLC, Vol. 19, No. 1 ( 2020-12)
    Abstract: The association of the atherogenic index of plasma (AIP), an emerging lipid index that can predict the risk for cardiovascular disease, with adverse outcomes in type 2 diabetes mellitus (T2DM) patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI) has not been determined. Therefore, the aim of this study was to investigate whether the AIP could independently predict adverse cardiovascular events in T2DM patients with ACS undergoing PCI. Methods This study was a retrospective analysis of a single-centre prospective registry involving 826 consecutive T2DM patients who underwent primary or elective PCI for ACS from June 2016 to November 2017. This study ultimately included 798 patients (age, 61 ± 10 years; male, 72.7%). The AIP was calculated as the base 10 logarithm of the ratio of the plasma concentration of triglycerides to high-density lipoprotein-cholesterol (HDL-C). All the patients were divided into 4 groups based on the AIP quartiles. The primary endpoint was a composite of death from any cause, non-fatal spontaneous myocardial infarction (MI), non-fatal ischaemic stroke, and unplanned repeat revascularization. The key secondary endpoint was a composite of cardiovascular death, non-fatal MI, and non-fatal ischaemic stroke. Results During a median follow-up period of 927 days, 198 patients developed at least one event. An unadjusted Kaplan-Meier analysis showed that the incidence of the primary endpoint increased gradually with rising AIP quartiles (log-rank test, P  = 0.001). A multivariate Cox proportional hazards analysis revealed that compared with the lowest AIP quartile, the top AIP quartile was associated with significantly increased risk for the primary and key secondary endpoints (hazard ratio [HR]: 2.249, 95% confidence interval [CI] : 1.438 to 3.517, P   〈  0.001; and HR: 2.571, 95% CI: 1.027 to 6.440, P  = 0.044, respectively). Conclusions A higher AI P value on admission was independently and strongly associated with adverse cardiovascular events in T2DM patients with ACS undergoing PCI.
    Type of Medium: Online Resource
    ISSN: 1476-511X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2091381-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Field Crops Research, Elsevier BV, Vol. 231 ( 2019-02), p. 122-129
    Type of Medium: Online Resource
    ISSN: 0378-4290
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2019
    detail.hit.zdb_id: 2012484-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Agronomy, MDPI AG, Vol. 12, No. 7 ( 2022-06-28), p. 1541-
    Abstract: Evaluating the performance of AquaCrop models under the drip irrigation of maize with soil conditioners is of great significance for improving coastal saline–alkali land crop management strategies. This study aimed to evaluate the performance of an AquaCrop model for maize growth simulation under different soil conditions (humic acid (HA) and sodium carboxymethyl cellulose (CMC)) and dosages and different levels of irrigation in the Shandong coastal saline–alkali area, China, and to optimize the amount of irrigation. Three years of experiments were carried out in the growing season of maize (Ludan 510) in 2019, 2020, and 2021. The dosages of HA were 5, 15, 25, and 35 g/m2, the dosages of CMC were 1, 2, 3, and 5 g/m2, and the levels of irrigation from 2019 to 2021 were all 120 mm. The model was calibrated with data from 2019, and the model was verified with data from 2020 to 2021, according to the recommended corn parameters in the AquaCrop model manual. The results showed that the model had a good simulation effect on canopy coverage, with a root-mean-square error (RMSE) of less than 15.2%, and the simulated aboveground biomass and yield were generally low. The simulated value of soil water content was generally high, with some treatments having errors of more than 15.0%. The simulation effect of irrigated maize from 2019 to 2020 was better than maize in 2021. The simulation effect of HA was better than that of CMC, while the simulation effect of a low-gradient modifier was better than that of high-gradient conditioner when compared with CMC. In conclusion, the AquaCrop model could be a viable method for predicting maize development under different soil conditioners in this area. The suitable levels of irrigation under HA and CMC treatments were 47.0–65.9 mm and 61.0–92.4 mm, respectively, according to the principle of high yield and water use efficiency. The results provided a reference for optimizing the drip irrigation of maize under the application of soil conditioners in coastal saline–alkali areas.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Soil Research, CSIRO Publishing, Vol. 59, No. 5 ( 2021-3-18), p. 511-524
    Abstract: A simple analytical solution of the equation for the one-dimensional horizontal permeability of soil water is important for estimating the hydraulic properties of soil. Our main objective was to develop analytical solutions to the nonlinear Richards equation, with constant-saturation upper boundary and an arbitrary initial soil water content (SWC) for horizontal absorption. We estimated the infiltration rate based on the hypothesis proposed by Parlange and carried out a series of transformations based on the Brooks–Corey model to obtain a theoretical function of the one-dimensional movement of water in unsaturated soil under an arbitrary initial SWC. The algebraic analytical solutions were simple, and the selection of the initial SWC was arbitrary. We assumed three scenarios of linear distributions of initial SWC, and Hydrus-1D software was used to simulate horizontal infiltration. Based on the comparison of algebraic and numerical results, the corrected algebraic model was proposed and verified by the arbitrary initial water content conditions when the maximum SWC was less than the half of saturated water content. The proposed method provides a description of horizontal infiltration for the heterogeneous initial SWCs.
    Type of Medium: Online Resource
    ISSN: 1838-675X , 1838-6768
    Language: English
    Publisher: CSIRO Publishing
    Publication Date: 2021
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science of The Total Environment, Elsevier BV, Vol. 912 ( 2024-02), p. 169214-
    Type of Medium: Online Resource
    ISSN: 0048-9697
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2024
    detail.hit.zdb_id: 1498726-0
    detail.hit.zdb_id: 121506-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Agronomy, MDPI AG, Vol. 13, No. 4 ( 2023-03-23), p. 960-
    Abstract: The contradiction between water demand and water supply in the Yellow River Delta restricts the corn yield in the region. It is of great significance to formulate reasonable irrigation strategies to alleviate regional water use and improve corn yield. Based on typical hydrological years (wet year, normal year, and dry year), this study used the coupling model of AquaCrop, the multi-objective genetic algorithm (NSGA-III), and TOPSIS-Entropy established using the Python language to solve the problem, with the objectives of achieving the minimum irrigation water (IW), maximum yield (Y), maximum irrigation water production rate (IWP), and maximum water use efficiency (WUE). TOPSIS-Entropy was then used to make decisions on the Pareto fronts, seeking the best irrigation decision under the multiple objectives. The results show the following: (1) The AquaCrop-OSPy model accurately simulated the maize growth process in the experimental area. The R2 values for canopy coverage (CC) in 2019, 2020, and 2021 were 0.87, 0.90, and 0.92, respectively, and the R2 values for the aboveground biomass (BIO) were 0.97, 0.96, and 0.96. (2) Compared with other irrigation treatments, the rainfall in the test area can meet the water demand of the maize growth period in wet years, and net irrigation can significantly reduce IW and increase Y, IWP, and WUE in normal and dry years. (3) Using LARS-WG (a widely employed stochastic weather generator in agricultural climate impact assessment) to generate future climate scenarios externally resulted in a higher CO2 concentration with increased production and slightly reduced IW demand. (4) Optimizing irrigation strategies is important for allowing decision makers to promote the sustainable utilization of water resources in the study region and increase maize crop yields.
    Type of Medium: Online Resource
    ISSN: 2073-4395
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2607043-1
    SSG: 23
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Soil and Tillage Research, Elsevier BV, Vol. 226 ( 2023-02), p. 105581-
    Type of Medium: Online Resource
    ISSN: 0167-1987
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2023
    detail.hit.zdb_id: 1498737-5
    SSG: 13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Cardiology, Elsevier BV, Vol. 227 ( 2017-01), p. 166-171
    Type of Medium: Online Resource
    ISSN: 0167-5273
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2017
    detail.hit.zdb_id: 1500478-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Polymers, MDPI AG, Vol. 14, No. 14 ( 2022-07-16), p. 2884-
    Abstract: The scientific use of sodium carboxymethyl cellulose (CMC) to improve the production capacity of saline–alkali soil is critical to achieve green agriculture and sustainable land use. It serves as a foundation for the scientific use of CMC to clarify the water and salt transport characteristics of CMC-treated soil. In this study, a one-dimensional soil column infiltration experiment was carried out to investigate the effects of different CMC dosages (0, 0.2, 0.4, 0.6, and 0.8 g/kg) on the infiltration characteristics, infiltration model parameters, water and salt distribution, and salt leaching of saline–alkali soil in Xinjiang, China. The results showed that the final cumulative infiltration of CMC-treated soil increased by 8.63–20.72%, and the infiltration time to reach the preset wetting front depth increased by 1.02–3.96 times. The sorptivity (S) in the Philip infiltration model and comprehensive shape coefficient (α) in the algebraic infiltration model showed a trend of increasing first and then decreasing with CMC dosage, revealing a quadratic polynomial relationship. The algebraic model could accurately simulate the water content profile of CMC-treated soil. CMC enhanced the soil water holding capacity and salt leaching efficiency. The average soil water content, desalination rate, and leaching efficiency were increased by 5.18–15.54%, 21.17–57.15%, and 11.61–30.18%, respectively. The effect of water retention and salt inhibition on loamy sand was the best when the CMC dosage was 0.6 g/ kg. In conclusion, the results provide a theoretical basis for the rational application of CMC to improve saline–alkali soil in arid areas.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Water, MDPI AG, Vol. 15, No. 7 ( 2023-04-04), p. 1396-
    Abstract: Irrigation guarantee capacity is the critical factor in evaluating the development level of irrigated agriculture and is also a future development trend. It is necessary to carry out scientific planning and reasonable allocation of irrigation water resources to ensure the sustainable development of irrigated agriculture and improve the efficiency and effectiveness of water resource utilization. This study is based on remote sensing meteorological data and the principles of the Miami model and water balance. We calculated the annual irrigation water requirement and effective irrigation water, and used the ratio between the effective irrigation water and irrigation water requirement as the basis for evaluating an irrigation guarantee capability index. By using irrigation guarantee capability evaluation indicators from multiple years, we evaluated and assessed the irrigation guarantee capability in the arid region of northwest China. In addition, we analyzed three indicators (i.e., irrigation water requirement IWR, effective irrigation water EIW, and irrigation guarantee capacity index IGCI) to explore the rational allocation of water resources in the northwest arid area. IWR, EIW, and ICGI in northwest China from 2001 to 2020 were analyzed, and the average values were 379.32 mm, 171.29 mm, and 0.50, respectively. Simultaneously, an analysis was conducted on the temporal and spatial distribution of IWR, EIW, and IGCI in the northwest region of China from 2001 to 2020. The results indicated that the rainfall in the southwestern edge of the Yellow River Basin and the eastern part of the Qaidam Basin could meet the irrigation water demand. The northwest edge of the Yellow River Basin, the central Hexi Inland River Basin, most of Northeast Xinjiang, central and southeastern Xinjiang, and other regions mainly rely on irrigation to meet agricultural water requirements. The rest of the region needs to rely on irrigation for supplementary irrigation to increase crop yield. All districts in the ‘Three Water Lines’ area of northwest China should vigorously develop sprinkler irrigation, micro-irrigation, pipe irrigation, and other irrigation water-saving technologies and support engineering construction. Under the premise of ensuring national food security, they should reduce the planting area of rice, corn, and orchards, and increase the planting area of economic crops such as beans and tubers in the ’Three Water Lines’ area. That is conducive to further reducing the agricultural irrigation quota and improving the matching degree of irrigation water resources. It provides a scientific reference for optimizing water resource allocation and improving irrigation water-use efficiency in northwest arid areas.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...