GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Water Vol. 15, No. 1 ( 2022-12-29), p. 126-
    In: Water, MDPI AG, Vol. 15, No. 1 ( 2022-12-29), p. 126-
    Abstract: Hydraulic pipeline transportation of a piped vehicle is a new mode of transportation with energy-saving potential and environmental protection. In order to analyze the turbulent characteristics of the flow around the piped vehicle, a large eddy simulation (LES) method was adopted to simulate the hydraulic characteristics and vortex characteristics of the flow at a Reynolds number of Re = 140,467 with diameter-to-length ratios of 0.4, 0.5, 0.6, and 0.7. The results showed that the main factor that affected the gap flow velocity, the backflow area length, and the turbulence intensity was the cylinder diameter in the diameter-to-length ratio of the piped vehicle. The backflow area lengths for piped vehicles with different diameter-to-length ratios were all less than 1 D, and the axial disturbance distances were about 7.5 D. In addition, a variety of vortex structures existed in the gap flow and the rear flow areas. At the beginning of vortex development, ring vortices were generated at the front and rear ends of the cylinder body. Subsequently, the front ring vortex fell off along the cylinder body and evolved into hairpin vortices. At the same time, a reflux vortex was formed after the rear ring vortex broke away from the cylinder body, and wake vortices were generated behind the rear supports. Finally, some worm vortices were dispersed from the wake vortices. These results can further improve the theoretical system for the hydraulic pipeline transportation of piped vehicles and can provide a theoretical basis for industrial application.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Mathematical Problems in Engineering, Hindawi Limited, Vol. 2018 ( 2018-10-10), p. 1-27
    Abstract: Energy shortage restricts the rapid development of the global transport industry. Trying to develop innovative modes of transport becomes an inevitable trend. Hydraulic Capsule Pipelines (HCPs) are the freight transportation modes that use a kind of fluid to push capsules filled with bulk solids materials through water-filled pipelines. HCPs not only alleviate everincreasing costs caused by energy scarcities and oil price up, but also solve issues like traffic congestion and environmental pollution. Published literature is mainly limited to numerical simulation of the unidirectional fluid-structure interaction between the capsules and the fluid inside the pipelines; furthermore, the hydraulic characteristics only involve the speed of the capsules and the pressure drop characteristics of the fluid within the pipe. This research was conducted on the following four aspects of HCPs. First, an improved cylindrical capsule called a “piped carriage” was evaluated. Second, an associated solution between the fluid domain within the pipe and the solid domain of the piped carriage was investigated numerically on the basis of the bidirectional fluid-structure interaction methods. Third, the effects of diameter ratio b (ratio of a diameter of the piped carriage D e to a pipe diameter D p , widely ranging in b =0.4~0.95) on hydraulic characteristics of transporting the piped carriage within the pipeline were extensively discussed. Finally, based on Least-Cost Principle, an optimization model of HCPs was effectively built. The results showed that the simulated results were in good agreement with the experimental results, which further indicated that it was feasible for solving the hydraulic characteristics of transporting the piped carriage by using the bidirectional fluid-structure interaction methods. The results will be of great reference value for further research on HCPs and also provide a theoretical foundation for the optimal design of HCPs.
    Type of Medium: Online Resource
    ISSN: 1024-123X , 1563-5147
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2018
    detail.hit.zdb_id: 2014442-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Informa UK Limited ; 2019
    In:  Archives of Agronomy and Soil Science Vol. 65, No. 11 ( 2019-09-19), p. 1521-1535
    In: Archives of Agronomy and Soil Science, Informa UK Limited, Vol. 65, No. 11 ( 2019-09-19), p. 1521-1535
    Type of Medium: Online Resource
    ISSN: 0365-0340 , 1476-3567
    RVK:
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2019
    detail.hit.zdb_id: 2068377-7
    detail.hit.zdb_id: 121282-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  Water Vol. 12, No. 8 ( 2020-07-30), p. 2158-
    In: Water, MDPI AG, Vol. 12, No. 8 ( 2020-07-30), p. 2158-
    Abstract: The piped hydraulic transportation of tube-contained raw material is a new long- distance transportation technology. This technology has the advantages of high efficiency, energy savings and environmental protection. The research in the published literature has mostly been limited to the speed, flow field, pressure field and energy consumption of a single-pipe vehicle. With the continuous improvement and development of this technology, two-pipe vehicles will become the focus of future research. The change of the vehicle spacing will affect the starting speed, flow field distribution and pressure drop characteristics of the water flow within the pipeline; thus, a numerical simulation is used in this work to study the hydraulic characteristics of stationary two-pipe vehicles under different spacings and compare them with physical experiments. The results show that the simulation results are in good agreement with the experimental results, which indicates that it is feasible to study two-pipe vehicles using numerical simulation. The results also show that, as the vehicle spacing increases, the interaction between the two-pipe vehicles gradually weakens. When the vehicle spacing reaches 4 l (where l represents the length of a single-pipe vehicle), the interaction between the two-pipe vehicles becomes negligible. There is no vortex shedding in the pipeline under different vehicle spacings. This study provides a reference for choosing the proper spacing between two-pipe vehicles and provides a theoretical basis for further research on the hydraulic characteristics of two-pipe vehicles in motion.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  Journal of Marine Science and Engineering Vol. 11, No. 9 ( 2023-09-03), p. 1738-
    In: Journal of Marine Science and Engineering, MDPI AG, Vol. 11, No. 9 ( 2023-09-03), p. 1738-
    Abstract: Hydrodynamic forces influence the efficiency and safety of pipeline transport in ocean engineering. A capsule pipeline is an example of pipeline transportation. In this work, a dynamic model is proposed to explain the oscillating motion of a capsule in a hydraulic capsule pipeline (HCP). The main study was conducted using a modal analysis of hydrodynamic forces acting on a capsule, which could be divided into frictional drag and pressure drag forces. The results indicated the presence of independent modes with different contributions to the hydrodynamic forces. Ultimately, the first to fiftieth modes represented 94~97.3% of the hydrodynamic force contributions. These modes had their own frequency ranges and power spectrum density (PSD) functions, and the frictional drag and pressure drag were both found to coincide with the narrow-band characteristics of the lower-order modes. However, the PSD functions of the frictional drag were found to fulfill the wide-band characteristics corresponding to the higher-order modes. Then, coherent structures were extracted. As the mode order increased, the vortices became more fragile and the frequency became higher. This phenomenon coincided with an increase in the frequency of the time coefficient peak, which became larger. This work could provide new perspectives on the hydrodynamic forces of pipeline transport, especially its dynamic analysis of the interaction between a rigid capsule and fluid flow.
    Type of Medium: Online Resource
    ISSN: 2077-1312
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2738390-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Water, MDPI AG, Vol. 11, No. 11 ( 2019-11-14), p. 2382-
    Abstract: The use of a flow discharge measuring device in irrigated areas is the key to utilizing water in a planned and scientific manner and to developing water-saving irrigation techniques. In this study, a new type of flow discharge measuring device for a U-channel—a plate flowmeter—was designed, and then the hydraulic characteristics of the flow discharge measurement process using the plate flowmeter were simulated and experimentally verified by adopting an RNG (Renormalization Group) k-ε turbulence model based on Flow-3D software. The results showed that in the process of measuring flow discharge with the plate flowmeter, the transverse flow velocity, the vertical flow velocity, and the relationship between the measured flow discharge and the deflection angle of the angle-measuring plate were basically consistent with the experimental results. The maximum relative errors were 5.3%, 6.2%, and 6.8% respectively, proving that it was feasible to use Flow-3D software to simulate the hydraulic characteristics of the flow discharge measurement process using the plate flowmeter. The vertical flow velocities at the center of the upstream section of the channel increased gradually from the bottom of the channel to the free water surface. The vertical flow velocities at the center of the downstream section of the channel first increased and then decreased from the bottom of the channel to the free water surface, and the maximum vertical flow velocity was located at a position below the free water surface. The maximum range of influence of the plate flowmeter on the flow disturbance in the channel was from 0.75 m upstream to 1.24 m downstream of the plate flowmeter. These results can provide a theoretical basis for optimizing the structural parameters of a plate flowmeter.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science Progress, SAGE Publications, Vol. 104, No. 1 ( 2021-01), p. 003685042110023-
    Abstract: The seepage properties of natural gravel are one of the problems to be considered in seepage project designs. In this paper, the seepage properties of the natural gravel with particle sizes of 5, 20 and 60 mm were investigated under different laying conditions. The effect of the particle size, laying depth, bulk density and pressurized head on the seepage properties of the natural gravel was analyzed by using the combined methods of theoretical analysis with physical model test. The results showed that the seepage flow in the natural gravel was non-laminar flow in the test conditions described in this paper. Meanwhile, the relationship between particle size, laying depth, bulk density, pressurized heads and seepage property was established. The seepage discharge increased with the increase of the pressurized head and particle size, and decreased with the increasing of laying depth and bulk density. The critical laying depth and bulk density can be obtained when the seepage discharge becomes zero. The empirical formula of the seepage discharge of natural gravel with different particle sizes, laying depths, bulk densities and pressurized heads was obtained with the method of nonlinear regression, which can be expressed as: [Formula: see text]. The empirical formula was experimentally validated. The maximum relative error did not exceed 6.73%, proving that the empirical formula of the seepage discharge of natural gravel was rational. The results can provide an important reference to further studying the seepage properties of macropore media, and form a theoretical basis for applying the natural gravel in the seepage projects.
    Type of Medium: Online Resource
    ISSN: 0036-8504 , 2047-7163
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2021
    detail.hit.zdb_id: 2483680-1
    detail.hit.zdb_id: 2199376-2
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    SAGE Publications ; 2019
    In:  Advances in Mechanical Engineering Vol. 11, No. 4 ( 2019-04), p. 168781401984406-
    In: Advances in Mechanical Engineering, SAGE Publications, Vol. 11, No. 4 ( 2019-04), p. 168781401984406-
    Type of Medium: Online Resource
    ISSN: 1687-8140 , 1687-8140
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2019
    detail.hit.zdb_id: 2501620-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    SAGE Publications ; 2019
    In:  Advances in Mechanical Engineering Vol. 11, No. 11 ( 2019-11), p. 168781401988554-
    In: Advances in Mechanical Engineering, SAGE Publications, Vol. 11, No. 11 ( 2019-11), p. 168781401988554-
    Abstract: The piped vehicle hydraulic transportation is a new energy-saving and environmental-friendly technique for transporting materials. To optimize the technical parameters of the piped vehicle hydraulic transportation, the transporting energy consumption of the technique was studied by a combination of theoretical analysis and experiments. Experiments were conducted at six piped vehicles with the diameter–length ratios of 0.4, 0.6, 0.47, 0.7, 0.53, and 0.8, seven flow Reynolds numbers of 102,140, 132,413, 167,014, 200,534, 234,037, 267,556, and 299,993, two transporting loads of 1200 and 1500 g, and three pipe layout forms of straight pipe, flat bend pipe, and inclined bend pipe. The results showed that the total energy consumption of the piped vehicle hydraulic transportation increased with increasing flow Reynolds numbers and increasing mass of transporting materials. The total transporting energy consumption of a piped vehicle with the diameter–length ratio of 0.53 was the highest, and that of a piped vehicle with the diameter–length ratio of 0.47 was the lowest. The unit transporting energy consumption of a bend pipe was higher than that of a straight pipe. Meanwhile, the total energy consumption of the piped vehicle hydraulic transportation was analyzed by hydrodynamic theory. The calculation formula for the total energy consumption of the piped vehicle hydraulic transportation was obtained and validated experimentally. The maximum relative error did not exceed 8.07%, proving that the total energy consumption calculation formula of the piped vehicle hydraulic transportation was rational. By analyzing the transporting efficiency of piped vehicle hydraulic transportation under different influencing factors, the optimal transporting combination was the piped vehicle with the diameter–length ratio of z = 0.47 and the flow Reynolds number of Re = 200,534. The results of this study can provide a theoretical basis for optimizing the technical parameters of the piped vehicle hydraulic transportation.
    Type of Medium: Online Resource
    ISSN: 1687-8140 , 1687-8140
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2019
    detail.hit.zdb_id: 2501620-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    MDPI AG ; 2022
    In:  Water Vol. 14, No. 14 ( 2022-07-16), p. 2239-
    In: Water, MDPI AG, Vol. 14, No. 14 ( 2022-07-16), p. 2239-
    Abstract: The step-type energy dissipator is widely used to construct small- and medium-sized reservoirs with its high energy dissipation rate. In order to further improve its air entrainment characteristics and energy dissipation, and reduce the influence of cavitation, in this paper, we added a trapezoidal energy dissipation baffle block at the convex corner of the traditional step to form a trapezoidal energy dissipation baffle block-step combination energy dissipator. We used a combination of hydraulic model experiments and numerical simulation to study the hydraulic characteristics. The results showed that the trapezoidal energy dissipation baffle block-step combination energy dissipator initial entrainment point, with the increase in flow rate, gradually moved backward. A step horizontal surface pressure change in the cavity recirculation area showed a prominent “V” shape; in front of the trapezoidal energy dissipation baffle block, there was a rising trend, and in the energy dissipation baffle block gap, there was a declining trend. The step vertical surface pressure showed a decreasing trend, and negative pressure appeared near the convex angle. The cross-section velocity distribution presented a trend of being small at the bottom and large at the surface, with a large velocity gradient in the longitudinal section of the energy dissipation baffle block and a small velocity gradient in the longitudinal section of the nonenergy dissipation baffle block. The energy dissipation rate reached more than 70% within the test range, and the energy dissipation rate gradually decreased with the increase in the flow rate. The combined energy dissipator is conducive to reducing the cavitation hazard and improving the energy dissipation effect, providing a reference for engineering design and existing step energy dissipators to remove risks and reinforcement.
    Type of Medium: Online Resource
    ISSN: 2073-4441
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2521238-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...