GLORIA

GEOMAR Library Ocean Research Information Access

Your search history is empty.

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for the Advancement of Science (AAAS)  (2)
  • Sun, Xiaoxi  (2)
Material
Publisher
  • American Association for the Advancement of Science (AAAS)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 378, No. 6621 ( 2022-11-18)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6621 ( 2022-11-18)
    Abstract: Spindle assembly is essential for ensuring accurate chromosome transmission in both meiosis and mitosis. In somatic cells, mitotic spindle assembly is mediated by duplicated centrosomes, but canonical centrosomes are absent in the oocytes of many species. In rodents, acentriolar microtubule organizing centers (aMTOCs) are responsible for meiotic spindle assembly, but it has long been supposed that human oocytes lack prominent aMTOCs on the meiotic spindle, and the exact mechanism of acentrosomal spindle assembly in human oocytes has remained unclear. RATIONALE Microtubule nucleation and ensuring spindle assembly are core events regulating oocyte nuclear maturation. To identify the potential proteins driving spindle microtubule nucleation in human oocytes, we systematically localized 86 human centrosome and microtubule-related proteins by immunofluorescence or three-dimensional high-resolution live cell imaging in more than 2000 human oocytes. We then tracked the dynamic migration of identified microtubule nucleators at different time points before and after nuclear envelope breakdown (NEBD). We further down-regulated corresponding proteins to confirm their role in microtubule nucleation and spindle assembly. Given that spindle microtubule nucleation defects result in impaired spindle assembly and abnormal oocyte maturation, we screened for mutations in genes encoding components of microtubule nucleators in a cohort of 1394 infertile female patients characterized by oocyte maturation arrest. RESULTS First, we found that in human oocytes the nucleation of spindle microtubules is initiated from kinetochores from 2 to 4 hours after NEBD. We showed the process of spindle microtubules nucleating from kinetochores in human oocytes. We then found that there are 43 proteins localized in the meiotic spindle, among which four proteins—centriolar coiled-coil protein 110 (CCP110), cytoskeleton-associated protein 5 (CKAP5), disrupted in schizophrenia 1 (DISC1), and transforming acidic coiled-coil–containing protein 3 (TACC3)—exhibited both kinetochore and spindle microtubule localization. The localization of the four proteins was notably different from their localization in human mitotic cells and in mouse oocytes. Together, the four proteins formed an unusual structure that was surrounded by microtubules in human germinal vesicle (GV) oocytes just before NEBD. We refer to this potential nucleating structure as the human oocyte microtubule organizing center (huoMTOC). We found that a single huoMTOC is formed at the cortex of human GV oocytes and migrates to the nuclear envelope before NEBD. After NEBD, the huoMTOC becomes fragmented and is recruited to kinetochores to initiate spindle microtubule nucleation. Down-regulation of huoMTOC components caused considerably impaired spindle microtubule nucleation and spindle assembly in human oocytes. This structure was not detected in the oocytes of other mammalian species such as mice and pigs. We finally identified two oocyte maturation arrest patients with compound heterozygous mutations in the key huoMTOC component TACC3 . All mutations disrupted the normal function of TACC3, resulting in the absence of the huoMTOC structure and completely impaired spindle assembly in the patients’ oocytes. CONCLUSION Our study shows that human oocytes possess an aMTOC-like structure, the huoMTOC, that serves as a major site of microtubule nucleation and is required for spindle assembly. The huoMTOC shows drastically different characteristics in terms of number, localization, and composition compared with aMTOCs in mouse oocytes. These findings suggest that a distinct mechanism for the initiation of microtubule nucleation and spindle assembly has evolved in human oocytes. We found that mutations in TACC3 cause defects in spindle assembly by disrupting the structure of the huoMTOC, which leads to clinical oocyte maturation arrest. This suggests that the huoMTOC might be an important biomarker for evaluating the quality of human oocytes. Our discovery of huoMTOC provides insights into the physiological mechanism of microtubule nucleation and spindle assembly in human oocytes. These findings also improve our understanding of the pathological mechanisms of oocyte maturation arrest. The huoMTOC structure in a human oocyte. The human GV oocyte shown here was matured for ~5 hours and fixed for immunofluorescence before NEBD. The huoMTOC (TACC3, magenta) was surrounded by numerous microtubules (green) on the nuclear envelope. The dashed square shows the magnification region. The arrow highlights the huoMTOC.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Translational Medicine Vol. 11, No. 485 ( 2019-03-27)
    In: Science Translational Medicine, American Association for the Advancement of Science (AAAS), Vol. 11, No. 485 ( 2019-03-27)
    Abstract: Connexins and pannexins are two protein families that play an important role in cellular communication. Pannexin 1 (PANX1), one of the members of pannexin family, is a channel protein. It is glycosylated and forms three species, GLY0, GLY1, and GLY2. Here, we describe four independent families in which mutations in PANX1 cause familial or sporadic female infertility via a phenotype that we term “oocyte death.” The mutations, which are associated with oocyte death, alter the PANX1 glycosylation pattern, influence the subcellular localization of PANX1 in cultured cells, and result in aberrant PANX1 channel activity, ATP release in oocytes, and mutant PANX1 GLY1. Overexpression of a patient-derived mutation in mice causes infertility, recapitulating the human oocyte death phenotype. Our findings demonstrate the critical role of PANX1 in human oocyte development, provide a genetic explanation for a subtype of infertility, and suggest a potential target for therapeutic intervention for this disease.
    Type of Medium: Online Resource
    ISSN: 1946-6234 , 1946-6242
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...