GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Stanczyk, Frank Z.  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2007
    In:  Cancer Research Vol. 67, No. 3 ( 2007-02-01), p. 1361-1369
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 67, No. 3 ( 2007-02-01), p. 1361-1369
    Abstract: We previously reported the selective loss of AKR1C2 and AKR1C1 in prostate cancers compared with their expression in paired benign tissues. We now report that dihydrotestosterone (DHT) levels are significantly greater in prostate cancer tumors compared with their paired benign tissues. Decreased catabolism seems to account for the increased DHT levels as expression of AKR1C2 and SRD5A2 was reduced in these tumors compared with their paired benign tissues. After 4 h of incubation with benign tissue samples, 3H-DHT was predominately catabolized to the 5α-androstane-3α,17β-diol metabolite. Reduced capacity to metabolize DHT was observed in tumor samples from four of five freshly isolated pairs of tissue samples, which paralleled loss of AKR1C2 and AKR1C1 expression. LAPC-4 cells transiently transfected with AKR1C1 and AKR1C2, but not AKR1C3, were able to significantly inhibit a dose-dependent, DHT-stimulated proliferation, which was associated with a significant reduction in the concentration of DHT remaining in the media. R1881-stimulated proliferation was equivalent in all transfected cells, showing that metabolism of DHT was responsible for the inhibition of proliferation. PC-3 cells overexpressing AKR1C2 and, to a lesser extent, AKR1C1 were able to significantly inhibit DHT-dependent androgen receptor reporter activity, which was abrogated by increasing DHT levels. We speculate that selective loss of AKR1C2 in prostate cancer promotes clonal expansion of tumor cells by enhancement of androgen-dependent cellular proliferation by reducing DHT metabolism. [Cancer Res 2007;67(3):1361–9]
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2007
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2004
    In:  Cancer Research Vol. 64, No. 20 ( 2004-10-15), p. 7610-7617
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 64, No. 20 ( 2004-10-15), p. 7610-7617
    Abstract: Progesterone plays an essential role in breast development and cancer formation. The local metabolism of progesterone may limit its interactions with the progesterone receptor (PR) and thereby act as a prereceptor regulator. Selective loss of AKR1C1, which encodes a 20α-hydroxysteroid dehydrogenase [20α-HSD (EC 1.1.1.149)], and AKR1C2, which encodes a 3α-hydroxysteroid dehydrogenase [3α-HSD (EC 1.1.1.52)] , was found in 24 paired breast cancer samples as compared with paired normal tissues from the same individuals. In contrast, AKR1C3, which shares 84% sequence identity, and 5α-reductase type I (SRD5A1) were minimally affected. Breast cancer cell lines T-47D and MCF-7 also expressed reduced AKR1C1, whereas the breast epithelial cell line MCF-10A expressed AKR1C1 at levels comparable with those of normal breast tissues. Immunohistochemical staining confirmed loss of AKR1C1 expression in breast tumors. AKR1C3 and AKR1C1 were localized on the same myoepithelial and luminal epithelial cell layers. Suppression of ARK1C1 and AKR1C2 by selective small interfering RNAs inhibited production of 20α-dihydroprogesterone and was associated with increased progesterone in MCF-10A cells. Suppression of AKR1C1 alone or with AKR1C2 in T-47D cells led to decreased growth in the presence of progesterone. Overexpression of AKR1C1 and, to a lesser extent, AKR1C2 (but not AKR1C3) decreased progesterone-dependent PR activation of a mouse mammary tumor virus promoter in both prostate (PC-3) and breast (T-47D) cancer cell lines. We speculate that loss of AKR1C1 and AKR1C2 in breast cancer results in decreased progesterone catabolism, which, in combination with increased PR expression, may augment progesterone signaling by its nuclear receptors.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2004
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...