GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Leukemia, Springer Science and Business Media LLC, Vol. 35, No. 10 ( 2021-10), p. 2978-2982
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 4087-4087
    Abstract: Background Despite significant improvements in the outcome of children with B-cell precursor acute lymphoblastic leukemia (BCP-ALL), therapeutic strategies for high risk and relapsed patients are limited and cause severe side effects. Reliable risk assessment and new therapeutic targets with high specificity are therefore warranted. The RAS pathway is the most frequently mutated pathway in cancer, and the RAF-MEK-ERK kinase axis is crucial for mediating the oncogenic effects of RAS. We and others have previously shown that in pediatric BCP-ALL, RAS pathway mutations can be retrospectively linked to relapse and chemotherapy resistance. However, data on the frequency of (sub-)clonal mutations at diagnosis and hence information about the prognostic relevance at initial diagnosis is lacking. Aim Guide therapy adaptation in pediatric BCP-ALL by evaluating the prognostic relevance of RAS pathway mutations and investigating the sensitivity to MEK inhibition. Methods We performed targeted next-generation sequencing of mutational hotspots in 13 RAS pathway genes to determine the frequency and clonality of RAS pathway mutations in a large, clinically and biologically characterized cohort of BCP-ALL patients. Initial diagnosis samples of 461 patients and 19 matched diagnosis-relapse sets were included. Mutations were considered clonal at ≥25% variant allele frequency, and high coverage allowed detection of subclones with down to 1% variant allele frequency. Clinical outcome was evaluated in 244 patients treated according to a contemporary, minimal residual disease (MRD)-based protocol (DCOG ALL10). The evolution of RAS pathway mutations was studied in 19 matched sets from diagnosis and relapse. Ex vivo sensitivity of RAS pathway mutated cells towards chemotherapeutic agents and trametinib was evaluated in an MTT-based cytotoxicity assay. Results Variants in RAS pathway genes were observed in 44% of initial diagnosis pediatric BCP-ALL cases, mostly affecting NRAS, KRAS, PTPN11, and FLT3. Clonal and subclonal mutations were found in 24% and 20% of patients, respectively. The mutation frequency was highest in high hyperdiploid, infant t(4;11)-positive, BCR-ABL1-like, and B-other cases (50-70%), whereas mutations were rare in ETV6-RUNX1-positive (27%), TCF3-PBX1-positive (8%) and BCR-ABL1-positive cases (4%). In matched diagnosis-relapse sets, clonal mutations at diagnosis were preserved at relapse, whereas the kinetics of subclones was variable. Interestingly, most RAS pathway mutations at relapse were clonal and exclusive. Cells carrying RAS pathway mutations, especially KRAS G13 mutations, were more often ex vivo resistant to prednisolone and vincristine. No association was found with ex vivo response to daunorubicine, L-asparaginase, 6-mercaptopurine, and 6-thioguanine. Mutant primary leukemic cells were ex vivo sensitive to the MEK-inhibitor trametinib. In addition, trametinib could enhance the cytotoxic effect of prednisolone ex vivo. In DCOG-ALL10 and COALL-97/-03 patients with clonal but not subclonal mutations, MRD levels tended to be more often high compared to wildtype cases (31% vs. 19%, p=0.057), while other risk factors (age, gender, white blood cell count, CNS, prednisone response) where not different. Event-free survival was lower in the standard risk and high risk arms of the DCOG ALL10 protocol (69% vs. 96%, p=0.027 and 56% vs. 100%, p=0.015, respectively). Conclusions Collectively, analysis of 461 diagnostic BCP-ALL patient samples identified RAS pathway mutations in 44% of patients, and one out of four carried a clonal mutation. MRD was the only risk factor associated with clonal RAS pathway mutations. MRD is essential to treatment stratification in many contemporary protocols, such as the DCOG ALL10 protocol, where only patients with negative MRD after induction courses are treated with a reduced regimen (standard risk arm). Given their unfavorable event-free survival, therapy should be adapted for mutated patients in future protocols. Since treatment intensification is not feasible for high risk or relapsed cases, addition of MEK inhibitors may be of benefit especially because they enhance the cytotoxicity of prednisolone. RAS pathway mutation status may therefore serve as biomarker to select patients for MEK-inhibitor treatment in new treatment protocols for children with BCP-ALL. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 115, No. 5 ( 2010-02-04), p. 1018-1025
    Abstract: MLL-rearranged acute lymphoblastic leukemia (ALL) represents an unfavorable type of leukemia that often is highly resistant to glucocorticoids such as prednisone and dexamethasone. Because response to prednisone largely determines clinical outcome of pediatric patients with ALL, overcoming resistance to this drug may be an important step toward improving prognosis. Here, we show how gene expression profiling identifies high-level MCL-1 expression to be associated with prednisolone resistance in MLL-rearranged infant ALL, as well as in more favorable types of childhood ALL. To validate this observation, we determined MCL-1 expression with quantitative reverse transcription–polymerase chain reaction in a cohort of MLL-rearranged infant ALL and pediatric noninfant ALL samples and confirmed that high-level MCL-1 expression is associated with prednisolone resistance in vitro. In addition, MCL-1 expression appeared to be significantly higher in MLL-rearranged infant patients who showed a poor response to prednisone in vivo compared with prednisone good responders. Finally, down-regulation of MCL-1 in prednisolone-resistant MLL-rearranged leukemia cells by RNA interference, to some extent, led to prednisolone sensitization. Collectively, our findings suggest a potential role for MCL-1 in glucocorticoid resistance in MLL-rearranged infant ALL, but at the same time strongly imply that high-level MCL-1 expression is not the sole mechanism providing resistance to these drugs.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 2823-2823
    Abstract: INTRODUCTION In 20-25% of the pediatric B cell precursor acute lymphoblastic leukemia (BCP-ALL) patients, the driving cytogenetic aberration is unknown. It is important to identify more primary lesions in this remaining B-other group to provide better risk stratification and identify possible treatment options. In this study, we aimed to identify novel recurrent fusion genes in BCP-ALL through RNA sequencing. METHODS We used paired-end total RNA Illumina sequencing to detect fusion genes with STAR-fusion and FusionCatcher in a population-based ALL cohort (n=71). We used Affymetrix U133 Plus2 expression arrays in a larger population-based ALL cohort (n=661) and an infant ALL cohort (n=70) to compare gene expression levels. Fluorescent in situ hybridization (FISH) was performed using Cytocell NUTM1 break-apart probe set MPH4800. RESULTS We identified an in-frame SLC12A6-NUTM1 fusion transcript composed of exons 1-2 of SLC12A6 fused to exons 3 to 8 of NUTM1 by RNA sequencing. Both genes are located on 15q14 within 5.3 Kb distance on opposite strands, and the fusion could result from an inversion. The fusion transcript is predicted to encode almost the total NUTM1 protein including the acidic binding domain for the histone acetyltransferase EP300. The SLC12A6-NUTM1 fusion case showed high NUTM1 expression, while NUTM1 expression was absent in the remaining cases. Using gene expression profiling, we identified four additional pediatric and two non-KMT2A-rearranged infant BCP-ALL cases with high NUTM1 expression. In the population-based cohort reflecting all different cytogenetic subtypes, these cases were restricted to the B-other group without known sentinel cytogenetic abnormalities. FISH showed a NUTM1 break apart pattern in all four tested NUTM1-positive cases indicative of a balanced translocation. RNA sequencing confirmed an ACIN1-NUTM1 fusion in one of the infant cases. We conclude that NUTM1 is normally not expressed in leukemic lymphoblasts, and that its expression can be induced by a gene fusion. The karyotypes of the predicted NUTM1 fusion cases combined with RNA sequencing data suggest that different chromosomal rearrangements are involved, likely resulting in different NUTM1 fusion partners. In literature, BRD9-NUTM1, IKZF1-NUTM1, and CUX1-NUTM1 fusions were reported in pediatric B-other cases, and BRD9-NUTM1 and ACIN1-NUTM1 fusions were reported in non-KMT2A-rearranged infants. Our combined aberrant gene expression and FISH results indicate that NUTM1 fusions occur in 2.4% (5/210) of pediatric and in 28% (2/7) of infant BCP-ALL cases without a sentinel cytogenetic aberration. The recurrence of NUTM1 aberrations in BCP-ALL cases without a known driver and the resulting expression of NUTM1 suggests that this fusion could be a new oncogenic driver in leukemia. All seven patients with a NUTM1 fusion achieved continuous complete remission with a median follow-up time of 8.3 years (range 4.8-13.8 years), suggesting that NUTM1 fusions in BCP-ALL have a favorable prognosis. To get an insight in the underlying biology, we compared gene expression between NUTM1-positive and NUTM1-negative pediatric B-other cases. We identified 130 differentially expressed probe sets (FDR ≤0.01) with a peculiar enrichment of those located on chromosome band 10p12.31 (Bonferroni adjusted p=4.05E-04). The genes in cytoband 10p12.31, including BMI1, were variably upregulated in 6/7 NUTM1-positive cases and positively correlated to NUTM1 expression levels. The NUTM1 protein is capable of binding and hereby stimulating the histone acetyltransferase activity of the EP300 protein. The EP300 protein preferentially binds a risk allele of BMI1 associated with increased risk for BCP-ALL. The BMI1 protein has been shown to convert BCR-ABL1-positive progenitor cells into BCR-ABL1-positive BCP-ALL cells. Hence, we postulate that NUTM1 fusion proteins contribute to leukemogenesis by stimulating EP300, leading to upregulation of BMI1 and other 10p12.31 genes in BCP-ALL. CONCLUSION NUTM1 fusions are a rare but recurrent event in BCP-ALL that seems to have a good prognosis. The NUTM1 fusions result in expression of the normally silent NUTM1 gene and are associated with upregulation of a cluster of genes on 10p12.31 including the leukemogenic BMI1 gene. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 136, No. Supplement 1 ( 2020-11-5), p. 25-26
    Abstract: Background and Aims A novel genetic subtype of B cell precursor acute lymphoblastic leukemia (B-ALL) is characterized by rearrangement of NUTM1 (NUTM1r) on 15q14 resulting in fusion of NUTM1 to one of several partner genes such as CUX1, ACIN1, BRD9, and IKZF1. The downstream effects of NUTM1r include upregulation of the proto-oncogene BMI1 and specific fusions also induce transcription of the HOXA gene cluster (Hormann et al. Haematologica 2019; Li et al. PNAS 2018). This novel subtype is rare in children, but appears to be more prevalent among infants negative for KMT2A rearrangement (KMT2Ar) based on the frequency of karyotypic 15q aberrations (De Lorenzo et al. Leukemia 2014). This international collaborative study aimed to determine the frequency of NUTM1r in infant and pediatric cohorts, and to characterize the demographic, clinical and molecular features of NUTM1r-positive B-ALL. Patients and Methods Interfant-related study groups provided NUTM1 screening results for KMT2Ar-negative Interfant-99 and -06 cases with karyotypic 15q aberration, normal karyotype, or missing karyotype. Additionally, NUTM1r-positive cases of any age were collected from the study groups united in the Ponte di Legno consortium. The identified NUTM1r-positive children were diagnosed between 1995-2019, infants (≤365 days of age) included in the Interfant-99 or 06 trials were diagnosed between 2000-2016, and remaining infants between 1986-2019. The techniques used for the detection of NUTM1r were break-apart FISH, RNA sequencing, and RT-PCR. Event-free survival (EFS) and overall survival (OS) were estimated according to Kaplan-Meier, standard error according to Greenwood, and the curves were compared by log-rank test. Results We identified 81 NUTM1r cases, including 35 Interfant-enrolled infants, 10 other infants and 36 children. NUTM1r was reported to be rare among pediatric B-ALL with an estimated frequency range of 0.28-0.86%. The median age among NUTM1r-positive children was 4.5 years (range 1-15). Among KMT2Ar-negative infants the frequency of NUTM1r was 21.7%. Of NUTM1r-positive infants, 54% were & lt;6 months at diagnosis (median 5.6, range 0.4-11.0 months) compared with 16% in the remaining KMT2Ar-negative infants (median 9.3, range 0.1-11.9; p & lt;0.0001). Other baseline characteristics (WBC, gender, prednisone poor response) were similar between NUTM1r-positive and -negative infants. Of the NUTM1r-positive cases, all achieved complete remission, 82% had minimal residual disease & lt;10e-4 at the end of induction, and no patient received stem cell transplant in first remission. The 4-year EFS was 100% in Interfant-enrolled NUTM1r-positive patients versus 74% (95% CI 65.1-81.0, p=0.001) in the remaining KMT2Ar-negative cases (n=126). The better outcome was confirmed also after adjusting for WBC, gender and prednisone response (p=0.0001). The 4-year OS were 100% and 88.0% (95% CI 80.5-92.7) for NUTM1r-positive and other KMT2Ar-negative infant cases, respectively (p-value=0.04). Children and non-Interfant-enrolled infants treated on different treatment protocols showed 89.4% (95% CI 78.6-1) 4-year EFS and 100% 4-year OS. In order of frequency, NUTM1 fusion partners were ACIN1 (30.4%), CUX1 (21.7%), BRD9 (17.4%), ZNF618 (13%), AFF1 (4.3%), SLC12A6 (4.3%), IKZF1 (2.9%), and three novel partners: ATAD5 (2.9%), CHD4 (1.4%) and RUNX1 (1.4%). Infants mainly showed fusions with ACIN1, CUX1, BRD9 and AFF1, associated with HOXA9 upregulation. Older infants and children showed both HOXA-upregulating and non-HOXA-upregulating fusions. Epigenetic profiling showed a distinct pattern of DNA methylation and histone modification of the HOXA gene cluster region in leukemic cells of an ACIN1-NUTM1 pediatric case compared with KMT2Ar-positive and KMT2Ar/NUTM1r-negative pediatric cases. Conclusions NUTM1r ALL was identified as the second largest subtype in infants, found in 21.7% of KMT2Ar-negative infant B-ALL, representing 5-7% of total infant ALL, and associated with excellent outcome on Interfant standard risk protocols. The favorable outcome was confirmed in the Ponte di Legno cohort of infant and pediatric NUTM1r-positive patients enrolled on different treatment protocols over more than two decades. We conclude that NUTM1r ALL is a favorable genetic subtype in infants and children and possibly eligible for treatment reduction. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2020
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2008
    In:  Blood Vol. 112, No. 11 ( 2008-11-16), p. 1913-1913
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1913-1913
    Abstract: MLL rearranged Acute Lymphoblastic Leukemia (ALL) represents an unfavorable and difficult to treat type of leukemia that often is highly resistant to glucocorticoids like prednisone and dexamethasone. As the response to prednisone largely determines the clinical outcome of pediatric ALL patients, overcoming resistance to these drugs may be an important step towards improved prognosis. Here we compared gene expression profiles between prednisone-resistant and prednisone-sensitive pediatric ALL patients to obtain gene expression signatures associated with prednisone resistance for both childhood ( & gt;1 year of age) and MLL rearranged infant ( & lt;1 year of age) ALL. Merging both signatures in search for overlapping genes associated with prednisone resistance in both patient groups we, found that elevated expression of MCL-1 (an anti-apoptotic member of the BCL-2 protein family) appeared to be characteristic for both prednisone-resistant ALL samples. To validate this observation, we determined MCL-1 expression using quantitative RT-PCR in a cohort of MLL rearranged infant ALL samples (n=23), and confirm that high-level MCL-1 expression significantly confers glucocorticoid resistance both in vitro and in vivo. Finally, down-regulation of MCL-1 in prednisone resistant MLL rearranged ALL cells by RNA interference (RNAi) markedly sensitized these cells to prednisone. Therefore we conclude that MCL-1 plays an important role in glucocorticoid resistance and that MCL- 1 suppressing agents co-administered during glucocorticoid treatment may be beneficial especially for MLL rearranged infant ALL patients.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Haematologica, Ferrata Storti Foundation (Haematologica), Vol. 104, No. 10 ( 2019-10), p. e455-e459
    Type of Medium: Online Resource
    ISSN: 0390-6078 , 1592-8721
    Language: English
    Publisher: Ferrata Storti Foundation (Haematologica)
    Publication Date: 2019
    detail.hit.zdb_id: 2186022-1
    detail.hit.zdb_id: 2030158-3
    detail.hit.zdb_id: 2805244-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 104, No. 11 ( 2004-11-16), p. 525-525
    Abstract: MLL gene rearranged acute lymphoblastic leukemia (MLL) is an aggressive type of acute lymphoblastic leukemia (ALL) with a relatively poor response to treatment, predominantly occurring in infants ( 〈 1 years of age). Since conventional chemotherapy is failing in 〉 50% of these patients, identification of novel therapeutic targets to direct therapy against is demanded. For this, understanding this disease and finding biological and molecular features characterizing MLL may be crucial. Here we report that infant MLL is characterized by silencing of the putative tumor suppressor fragile histidine triad (FHIT) gene. Gene expression profiling showed that FHIT expression is significantly reduced in MLL patients (n=20) as compared to patients diagnosed with conventional ALL (n=24) bearing germ line MLL genes. Using quantitative real-time PCR we confirmed FHIT mRNA expression to be low in MLL gene rearranged infant ALL (infant MLL) as compared to both infants and older children (non-infants) not carrying chromosomal abnormalities involving the MLL gene. Infant MLL patients (n=35) significantly (p 〈 0.001) expressed ~15-fold less FHIT mRNA compared to infant ALL patients (n=8) and 11-fold less than non-infant ALL patients (n=22). Methylation specific PCR (MSP) analysis demonstrated that the FHIT promoter region is hypermethylated in all of the 36 infant MLL cases tested, resulting in strongly reduced FHIT mRNA as well as FHIT protein expression. In contrast, the incidence of FHIT promoter methylation in both infant and non-infant ALL patients carrying germ line MLL genes was markedly lower, with a frequency of 63% (5/8) and 56% (24/43) respectively. Suppression of FHIT expression could be reversed by exposing leukemia cells bearing MLL gene rearrangements to the demethylating drug 5′-aza-2′-deoxycytidine. These findings imply that MLL rearranged ALL is characterized by FHIT promoter hypermethylation. Currently experiments are being conducted to determine the biological significance of FHIT silencing in this type of cancer.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2004
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Blood, American Society of Hematology, Vol. 106, No. 11 ( 2005-11-16), p. 4915-4915
    Abstract: Activating FLT3 mutations have been identified as prognostic factors in multiple myeloid malignancies. Recent studies have demonstrated that ligand-independent activation of FLT3 can also result from overexpression of wild-type FLT3. In addition, ligand-dependent activation has been observed in leukemic cells co-expressing FLT3 ligand (FLT3L), resulting in autocrine FLT3 signaling which is independent of FLT3 mutations. In Juvenile Myelo-Monocytic Leukemia (JMML), FLT3 internal tandem duplications (FLT3/ITDs) mutations affecting the tyrosine kinase domain (TKD) are rare. However, no data are yet available on the frequency of expression levels of FLT3 and FLT3L in JMML. If activated FLT3 occurs in JMML, one could imagine that these patients might benefit from treatment with small molecule FLT3 inhibitors, especially as to date the curative treatment of JMML is limited to allogeneous bone marrow transplantation. In 36 JMML patients FLT3 and FLT3L mRNA levels were assessed using real-time quantitative PCR (Taqman). Furthermore these samples were screened for the presence of activating FLT3/ITDs and FLT3/TKD mutations. MTT assays were performed to assess the response of JMML cells to the known FLT3 inhibitor PKC412 (Novartis). FLT3 appeared to be expressed only at basal levels and FLT3L expression was very low. In none of the 36 JMML samples FLT3/ITDs or TDK mutations were found, consistent with the observation that PKC412 was not cytotoxic in JMML samples (n=12), in contrast to leukemic cells of children with ALL which carried an activated FLT3. These data suggest that constitutively activated FLT3 does not occur in JMML. Therefore targeting FLT3 by tyrosine kinase inhibitors like PKC412 is unlikely to be effective in JMML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2005
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Blood, American Society of Hematology, Vol. 110, No. 7 ( 2007-10-01), p. 2774-2775
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2007
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...