GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-11-24)
    Abstract: The underground developments are likely to deteriorate the water quality, which causes damage to the structure. The pollutant levels largely affect the aquifer properties and alter the characteristics of the water quality. Ferritin nanoparticle usage proves to be an effective technology for reducing the pollutant level of the salts, which are likely to affect the underground structure. The observation wells are selected around the underground Metro Rail Corridor, and the secondary observation wells are selected around the corridors. Ferritin is a common iron storage protein as a powder used in the selected wells identified in the path of underground metro rail corridors. Water sampling was done to assess the water quality in the laboratory. The water quality index plots for the two phases (1995–2008) and (2009–2014) using GIS explains the water quality scenario before and after the Ferritin treatment. The Ferritin treatment in water was very effective in reducing the pollutants level of Fluoride and sulphate salts which is likely to bring damage to the structure.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Photoenergy, Hindawi Limited, Vol. 2022 ( 2022-1-15), p. 1-6
    Abstract: The exploration of Coulomb blockade oscillations in plasmonic nanoparticle dimers is the subject of this study. When two metal nanoparticles are brought together at the end of their journey, tunnelling current prevents an infinite connection dipolar plasmon and an infinite amplification in the electric fields throughout the hot spot in between nanoparticles from occurring. One way to think about single-electron tunnelling through some kind of quantum dot is to think about Coulomb blockage oscillations in conductance. The electron transport between the dot and source is considered. The model of study is the linear conductance skilled at describing the basic physics of electronic states in the quantum dot. The linear conductance through the dot is defined as G = lim ⟶ 0 I / V in the limit of infinity of small bias voltage. We discuss the classical and quantum metallic Coulomb blockade oscillations. Numerically, the linear conductance was plotted as a function gate voltage. The Coulomb blockade oscillation occurs as gate voltage varies. In the valleys, the conductance falls exponentially as a function gate voltage. As a result of our study, the conductance is constant at high temperature and does not show oscillation in both positive and negative gate voltages. At low temperature, conductance shows oscillation in both positive and negative gate voltages.
    Type of Medium: Online Resource
    ISSN: 1687-529X , 1110-662X
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2028941-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Bioinorganic Chemistry and Applications, Hindawi Limited, Vol. 2022 ( 2022-1-11), p. 1-5
    Abstract: The influence of bath temperature on nano-manufactured PbSe (lead selenide) films was successfully generated by utilizing CBD on the acid solution’s metal surface tool. Pb (NO3)2 was employed as a lead ion source as a precursor, while Na2O4Se was used as a selenide ion source. The XRD characterization revealed that the prepared samples are the property of crystalline structure (111), (101), (100), and (110) Miller indices. The scanning electron microscope indicated that the particles have a rock-like shape. There was a decrement of energy bandgap that is from 2.4 eV to 1.2 eV with increasing temperature 20°C–85°C. Thin films prepared at 85°C revealed the best polycrystal structure as well as homogeneously dispersed on the substrate at superior particle scales. The photoluminescence spectrophotometer witnessed that as the temperature of the solution bath increases from 20°C to 85°C, the average strength of PL emission of the film decreases. The maximum photoluminescence strength predominantly exists at high temperatures because of self-trapped exciton recombination, formed from O2 vacancy and particle size what we call defect centres, for the deposited thin films at 45°C and 85°C. Therefore, the finest solution temperature is 85°C.
    Type of Medium: Online Resource
    ISSN: 1687-479X , 1565-3633
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2213020-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Current Pharmaceutical Biotechnology, Bentham Science Publishers Ltd., Vol. 24 ( 2023-08-21)
    Abstract: Drug repositioning is a method of using authorized drugs for other unusually complex diseases. Compared to new drug development, this method is fast, low in cost, and effective. Through the use of outstanding bioinformatics tools, such as computer-aided drug design (CADD), computer strategies play a vital role in the re-transformation of drugs. The use of CADD's special strategy for target-based drug reuse is the most promising method, and its realization rate is high. In this review article, we have particularly focused on understanding the various technologies of CADD and the use of computer-aided drug design for target-based drug reuse, taking COVID-19 and cancer as examples. Finally, it is concluded that CADD technology is accelerating the development of repurposed drugs due to its many advantages, and there are many facts to prove that the new ligand-targeting strategy is a beneficial method and that it will gain momentum with the development of technology.
    Type of Medium: Online Resource
    ISSN: 1389-2010
    Language: English
    Publisher: Bentham Science Publishers Ltd.
    Publication Date: 2023
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 12, No. 1 ( 2022-06-30)
    Abstract: The current study assesses the prospect of using R. Communis seed oil as a substitute fuel for diesel engines. Biodiesel is prepared from the R. Communis plant seed oil by a single-step base catalytic transesterification procedure. The investigation deals with the Physico-chemical characteristics of R. Communis biodiesel and has been associated with the base diesel. It has been perceived that the characteristics of biodiesel are well-matched with the base diesel under the ASTM D6751 limits correspondingly. R. Communis biodiesel is blended in different proportions with base diesel such as D10, D20, D30, D40, D50 and D100 and is tested in a Kirloskar TV1 single-cylinder, 4 blows DI engine under altered loading conditions. Outcomes demonstrate that BTE and BSFC for D10 as well as D20 are similar to base diesel. BSFC indicates that the precise BSFC of base diesel, D10, D20, D30, D40 and D50 was 0.87, 1.70, 2.60, 3.0, 3.4, and 3.5 kg/kW-hr, respectively. The extreme BTE at full load condition for base diesel, D10, D20, D30, D40, D50 and D100 are 28.2%, 28.1%, 27.9%, 25.5%, 24.1%, and 23.6% , respectively. In the case of engine emissions, R. Communis biodiesel blends provided an average decrease in hydrocarbon (HC), Carbon-monoxide (CO) and carbon dioxide (CO2) associated with base diesel. Nevertheless, R. Communis biodiesel blends discharged high stages of nitrogen oxide (NOx) compares to base diesel. Base diesel, D10, D20, D30, D40, D50, and D100 had UBHC emissions of 45 ppm, 40 ppm, 44 ppm, 46 ppm, 41 ppm, and 43 ppm, respectively. The reduction in CO emissions for D10, D20, D30, D40, D50 and D100 are 0.13%, 0.14%, 0.17%, 0.18% and 0.21% respectively. The dissimilarity in NOx attentiveness within brake powers for D10, D20, D30, D40, and D50 and base diesel are 50-ppm, 100 ppm, 150 ppm, 250 ppm, 350 ppm, and 500 ppm, respectively. The dissimilarity of CO 2 emanation with reverence to break powers for the base-diesel, D10, D20, D30, D40, D50, and D100 are 4.8%, 4.9%, 4.8%, 4.56%, 4.9% and 5.1%, respectively. The present research provides a way for renewable petrol blends to substitute diesel for powering diesel engines in that way dropping the reliance on fossil fuels.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Journal of Nanomaterials, Hindawi Limited, Vol. 2022 ( 2022-4-30), p. 1-8
    Abstract: Titanium dioxide (TiO2) nanoparticles with the application of pharmaceutical shrub extract are a hopeful unconventional to the old chemical technique. The investigation is intended to synthesis TiO2 NPs in biological approach from homegrown plant Kusaayee Lippia adoensis leaf extraction which is widespread therapeutic plant and sophisticated in home parks of Ethiopia, in Oromia region in Dambi Dollo town. The bioprepared TiO2 nanoparticles written off as by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and infrared visible spectrum (UV-Vis) as well as photoluminescence (PL). In addition, this investigation is assessed the antibacterial activities of the prepared TiO2 nanoparticles in illogicality of medical plus standard anxieties Escherichia coli, Klebsiellae preumonia, Staphylococcus aureus, and Enterococcus faecalis through the disc dispersal technique. Furthermore of this work, TiO2 nanoparticles prepared using Lippia adoensis leaf extraction revealed hopeful result in contradiction of in cooperation Gram-positive (G+) and Gram-Negative (G-) bacterial anxieties by means of extreme reserve area of 14 nm and 12 nm, respectively, using uncalcinated system of the prepared TiO2 nanoparticles.
    Type of Medium: Online Resource
    ISSN: 1687-4129 , 1687-4110
    Language: English
    Publisher: Hindawi Limited
    Publication Date: 2022
    detail.hit.zdb_id: 2229480-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...