GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Song, Zengqiang  (2)
  • Yu, Jingyi  (2)
  • Zhan, Lingling  (2)
Material
Person/Organisation
Language
Years
  • 1
    Online Resource
    Online Resource
    Frontiers Media SA ; 2022
    In:  Frontiers in Microbiology Vol. 12 ( 2022-1-7)
    In: Frontiers in Microbiology, Frontiers Media SA, Vol. 12 ( 2022-1-7)
    Abstract: The resistance of methicillin-resistant Staphylococcus aureus (MRSA) has augmented due to the abuse of antibiotics, bringing about difficulties in the treatment of infection especially with the formation of biofilm. Thus, it is essential to develop antimicrobials. Here we synthesized a novel small-molecule compound, which we termed SYG-180-2-2 (C 21 H 16 N 2 OSe), that had antibiofilm activity. The aim of this study was to demonstrate the antibiofilm effect of SYG-180-2-2 against clinical MRSA isolates at a subinhibitory concentration (4 μg/ml). In this study, it was showed that significant suppression in biofilm formation occurred with SYG-180-2-2 treatment, the inhibition ranged between 65.0 and 85.2%. Subsequently, confocal laser scanning microscopy and a bacterial biofilm metabolism activity assay further demonstrated that SYG-180-2-2 could suppress biofilm. Additionally, SYG-180-2-2 reduced bacterial adhesion and polysaccharide intercellular adhesin (PIA) production. It was found that the expression of icaA and other biofilm-related genes were downregulated as evaluated by RT-qPCR. At the same time, icaR and codY were upregulated when biofilms were treated with SYG-180-2-2. Based on the above results, we speculate that SYG-180-2-2 inhibits the formation of biofilm by affecting cell adhesion and the expression of genes related to PIA production. Above all, SYG-180-2-2 had no toxic effects on human normal alveolar epithelial cells BEAS-2B. Collectively, the small-molecule compound SYG-180-2-2 is a safe and effective antibacterial agent for inhibiting MRSA biofilm.
    Type of Medium: Online Resource
    ISSN: 1664-302X
    Language: Unknown
    Publisher: Frontiers Media SA
    Publication Date: 2022
    detail.hit.zdb_id: 2587354-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: BMC Microbiology, Springer Science and Business Media LLC, Vol. 21, No. 1 ( 2021-12)
    Abstract: In recent years, clinical Staphylococcus aureus isolates have become highly resistant to antibiotics, which has raised concerns about the ability to control infections by these organisms. The aim of this study was to clarify the effect of a new small molecule, ZY-214-4 (C 19 H 11 BrNO 4 ), on S. aureus pigment production. Results At the concentration of 4 μg/mL, ZY-214-4 exerted a significant inhibitory effect on S. aureus pigment synthesis, without affecting its growth or inducing a toxic effect on the silkworm. An oxidant sensitivity test and a whole-blood killing test indicated that the S. aureus survival rate decreased significantly with ZY-214-4 treatment. Additionally, ZY-214-4 administration significantly reduced the expression of a pigment synthesis-related gene ( crtM ) and the superoxide dismutase genes ( sodA ) as determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. ZY-214-4 treatment also improved the survival rate of S. aureus -infected silkworm larvae. Conclusions The small molecule ZY-214-4 has potential for the prevention of S. aureus infections by reducing the virulence associated with this bacterium.
    Type of Medium: Online Resource
    ISSN: 1471-2180
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2041505-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...