GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 2745-2745
    Abstract: Gliomas are diffusely invasive brain tumors with fatal outcomes and few effective treatments. Precision medicine focuses on targeting the genetics of individual tumors, but not host genetics, despite studies that have linked germline polymorphisms with glioma risk. Accordingly, glioma survival studies in mice utilize genetically variable tumors on identical host genetic backgrounds, which fails to differentiate between cancer cell-autonomous (CCA) and tumor microenvironment (TME) effects on glioma progression and host survival. The Collaborative Cross (CC) is a panel of genetically diverse mouse strains derived from both wild- and traditional inbred laboratory strains that facilitates high-resolution genetic mapping in models of complex disease. Here, we implement a novel platform to discover genetic modifiers of both CCA and TME phenotypes using genetically defined orthotopic murine allograft gliomas and CC hosts. We stereotactically injected Nf1;Trp53-/-oligodendrocyte progenitor-derived mouse tumor cells into syngeneic C57BL/6 control mice and 14 different CC strains. Seven strains survived significantly longer than controls (P & lt;0.05), suggesting slower tumor growth (Gs, growth slow). The remaining 7 strains survived similarly to controls, suggesting fast growth (Gf, growth fast). Variable tumor growth in CC mice suggests that genetic background influences molecular processes in the TME that inhibit or potentiate tumor growth, respectively. To identify candidate genes, we performed RNA sequencing on 36 tumors from 3 Gf strains, 4 Gs strains, and controls. 134 genes were differentially expressed among Gf, Gs, and control tumors (P & lt;0.05). Hierarchical clustering on these genes revealed that Gs strains clustered separately from Gf and controls. Gene ontology analysis using GOrilla showed 30 enriched processes, (FDR q & lt;0.001), all of which were involved in immune responses or extracellular matrix biology. These results suggest that Gs strains activate immune and TME processes that slow tumor growth. Quantitative trait locus (QTL) analyses of host genetics and tumor data are pending and will facilitate identification of genetic variants that influence TME effects on tumor progression. Citation Format: Kasey Skinner, Martin Ferris, Ryan Bash, Abigail Shelton, Erin Smithberger, Steve Angus, Brian Golitz, Noah Sciaky, Jeremy Simon, Jason Stein, Glenn Matsushima, Quinn Ostrom, Lindsay Stetson, Jill Barnholtz-Sloan, Harshil Dhruv, Michael Berens, Fernando Pardo Manuel de Villena, C. Ryan Miller. Tumor microenvironment and host genetics impact glioma progression in a Collaborative Cross-based orthotopic allograft model [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 2745.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 19, No. suppl_6 ( 2017-11-06), p. vi84-vi84
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 2372-2372
    Abstract: The most attractive target for personalized medicine of glioblastoma (GBM) remains epidermal growth factor receptor (EGFR), due to its frequency in and specificity for the disease and the number of drugs that target its tyrosine kinase domain. Yet several EGFR tyrosine kinase inhibitors (TKI) have failed clinically, in part due to multiple molecular mechanisms of resistance. The most common oncogenic mutation in GBM is EGFRvIII, while the most common tumor suppressors lost are CDKN2A and PTEN. Mutations in these 3 genes frequently co-occur. To identify potentially attractive kinase targets for use in combination regiments with an EGFR TKI, we used multiplex inhibitor bead/mass spectrometry (MIB-MS) and RNA-seq to examine the baseline kinomes and transcriptomes of non-germline genetically engineered mouse (nGEM) models of GBM, specifically cultured Cdkn2a-null murine astrocytes (C) engineered to harbor human EGFRvIII (CEv3), Pten deletion (CP), or both (CEv3P). Among these 4 lines, 5.2-9.7% of the transcriptome was differentially expressed using DESeq2 at Q & lt;0.001. Gene set analysis showed progressive loss of astrocyte and gain of stemness signatures in more heavily mutated cells (CEv3P & gt;CEv3 & gt; CP & gt;C), suggesting that EGFRvIII and Pten deletions cooperate to induce astrocyte de-differentiation into glioma stem cells (GSC). Principal components analysis showed a significant influence of both EGFRvIII (component 1, 44-48% variance) and Pten (component 2, ~33% variance) status on the transcriptome and kinome. Of the 228 expressed kinases detected using MIB-MS, 86 (38%) were differentially expressed in 1 or more genotypes. Integrated transcriptome and kinome analysis showed that Egfr was significantly over-expressed and hyperactive in EGFRvIII-mutated cells. Akt1 showed a non-expression driven increase in kinase activity in Pten-deleted cells, consistent with known effects of Pten on PI3K signaling. Pairwise genotype comparisons revealed 5-20 additional kinases that were differentially activated. Some, including Pdgfrb, Fgfr2, Lyn, Ddr1, and several members of the Ephrin family, represent potential targets for dual therapy with EGFR TKI. Clinically-curated human GBM patient-derived xenograft (PDX) models matched to CEv3P, CEv3, CP, and C nGEM models will afford comparisons in a patient-based preclinical setting for translational support. Functional kinome analysis using targeted EGFR TKI and MIB-MS in nGEM and PDX will help define the kinase networks required for EGFRvIII-driven GBM pathogenesis and may aid in the identification of novel treatment combinations. Citation Format: Erin Smithberger, Alex R. Flores, Madison K. Butler, Harshil D. Dhruv, Gary L. Johnson, Michael E. Berens, Frank B. Furnari, C. Ryan Miller. Kinome profiling of non-germline, genetically engineered mouse models of glioblastoma driven by Cdkn2a, Egfr, and/or Pten mutations reveals genotype-dependent kinase targets [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2372.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 20, No. suppl_6 ( 2018-11-05), p. vi77-vi77
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 20, No. suppl_6 ( 2018-11-05), p. vi77-vi77
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 21, No. Supplement_6 ( 2019-11-11), p. vi74-vi74
    Abstract: Glioblastoma (GBM) is an aggressive primary brain tumor with a poor survival rate. One of the most common molecular alterations seen in GBM is amplification and/or mutation of the Epidermal Growth Factor Receptor (EGFR), which has made it an attractive therapeutic target. However, several EGFR tyrosine kinase inhibitors have been tested clinically in GBM with minimal success. One reason for this lack of efficacy could be due to acute, adaptive resistance via alternative pathway activation. To investigate this mechanism of tumor resistance, we used RNA-seq and multiplex inhibitor bead/mass spectrometry (MIB-MS) to analyze the transcriptomes and kinomes of genetically engineered murine astrocytes with common GBM genotypes. We have previously shown that 38% of the expressed kinome varied among a panel of diverse nGEM astrocytes harboring Cdkn2a deletion (C) plus Pten deletion (CP), wild-type human EGFR (CE) or EGFRvIII (CEv3) overexpression or both EGFRvIII overexpression and Pten deletion (CEv3P). Although CE have a similar transcriptional profile to C cells at baseline, when treated with the EGFR inhibitor afatinib, CE respond more similarly to CEv3 cells. When cells containing endogenous murine EGFR (C and CP) are treated with afatinib, fewer than 0.5% of kinases showed differential expression. In cells with EGFR overexpression alone, more than 6% of kinases were differentially expressed upon afatinib treatment, including Ntrk3, Fgfr2 and 3, Lyn, Bmx, Epha2 and 5, Fn3k, a kinase involved in fructosamine processing, and Nrbp2, a kinase involved in regulation of apoptosis. This effect was blunted in cells lacking Pten in addition to having EGFRvIII (CEv3P), resulting in less than 2% of kinases being differentially expressed. The only kinase upregulated in all three EGFR-overexpressing cell types was Coq8a, which is involved in electron transport and response to DNA damage. Given this overlap in response, Coq8a could be a potential dual treatment target for GBM.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2019
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 331-331
    Abstract: Glioblastoma (GBM) is a devastating primary brain tumor with limited treatment options. Extensive molecular characterization has revealed two particularly frequent mutations: CDKN2A deletion (50-60%) and EGFR (40-50%). EGFRvIII (~35%) is a constitutively active truncation mutant with exons 2-7 deleted. EGFR is a particularly attractive therapeutic target due to frequent activating mutations, such as EGFRvIII, and ready availability of multiple targeted inhibitors. Several EGFR tyrosine kinase inhibitors (TKI) have failed clinically, due in part to acquired resistance. To mechanistically examine this type of resistance, we used genetically-engineered mouse astrocytes harboring homozygous deletions of Cdkn2a, as well as EGFRvIII (CEv3). CEv3 astrocytes were made intrinsically resistant to the EGFR TKI gefitinib or erlotinib via long-term exposure, both in vitro and in vivo. We found that long-term gefitinib or erlotinib exposure conferred variable levels of cross resistance to a panel of second- and third-generation EGFR TKI (ΔIC50 1.12-36.1-fold), relative to non-resistant parent lines. We have previously shown that dynamic kinome reprogramming may be responsible for TKI resistance in glioblastoma. Therefore, we used a chemical proteomics method, multiplexed inhibitor beads and mass spectrometry (MIB-MS), to examine changes in the expressed and functional kinome, in both the presence or absence of one of several EGFR TKI known to penetrate the blood-brain barrier. Additionally, we performed RNA sequencing (RNA-seq) to inspect transcriptomic alterations in response to these drugs. RNA-seq showed that resistant CEv3 mouse astrocytes clustered separately from their non-resistant in vitro and in vivo counterparts. Acquired resistance also induced transcriptome alterations governing cellular metabolism, including upregulation of metabolic pathways and downregulation of RNA processing genes. Importantly, the kinase transcriptome was rewired, as 67 kinases were differentially expressed across parental and resistant cell lines (Q & lt;0.001). Probing the dynamic kinome response to afatinib, an EGFR TKI, using RNA-seq identified two potential kinases involved in acute, adaptive resistance to afatinib, Bmx and Ntrk3. Integrated kinome profiling using RNA-seq and MIB-MS in murine models of GBM with defined mutational profiles provides a powerful framework to define novel therapeutic targets that could significantly alter current treatment paradigms. Citation Format: Abby Shelton, Erin Smithberger, Madison Butler, Alex Flores, Ryan Bash, Steve Angus, Noah Sciaky, Harshil Dhruv, Gary L. Johnson, Michael E. Berens, Frank Furnari, C. Ryan Miller. Dynamic kinome targeting reveals kinases involved in acquired resistance to tyrosine kinase inhibitors in EGFR-driven glioblastomas [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 331.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 20, No. suppl_6 ( 2018-11-05), p. vi261-vi261
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3019-3019
    Abstract: Glioblastoma (GBM) is an aggressive brain tumor with few effective treatments. Epidermal growth factor receptor (EGFR) is frequently amplified and mutated in GBM, leading to trials of several EGFR tyrosine kinase inhibitors, but none have proven successful. One potential reason for failure is acquired resistance, particularly acute, adaptive responses in the kinome. To study this adaptive resistance mechanism, we used RNA-seq and multiplex inhibitor bead/mass spectrometry (MIB-MS) to analyze transcriptomes and kinomes of genetically-engineered murine astrocytes with genotypes commonly seen in human GBM. We previously showed that 38% (86 of 228) of the expressed kinome varied among a panel of genetically diverse murine astrocytes harboring Cdkn2a deletion (C) plus Pten deletion (CP), wild-type human EGFR (CE) or EGFRvIII (CEv3) overexpression, or both overexpressed EGFRvIII and Pten deletion (CEv3P). Pairwise genotype comparisons revealed multiple differentially activated kinases, including Pdgfrb, Fgfr2, Lyn, Ddr1, and several Ephrin family members. We further investigated these potential targets for dual therapy with EGFR TKI by examining the transcriptional response of cultured astrocytes at 4, 24, and 48 hours after 3 μM afatinib. Afatinib induced no kinome changes in C and only 3 kinases (Fn3k, Prkg2, and Syk) were altered in CP astrocytes. Despite similar baseline gene expression profiles, CE astrocytes overexpressing wild-type EGFR responded significantly differently than C astrocytes without. Five kinases (Dclk1, Epha3, Epha7, Fgfr3, and Prkg1) were induced, while 14 were repressed. Six were similarly repressed in CEv3 (Bub1, Nek2, Pask, Plk4, Prkcb, and Vrk1). Whereas the kinase transcriptome response was blunted in C, CP, and CE astrocytes, afatinib induced altered expression of significantly more kinases in CEv3 (82) and CEv3P cells (49). One particularly attractive target in CEv3 astrocytes was Epha4, which afatinib induced & gt;40-fold. Dual inhibition of EGFRvIII and Epha4 kinases may thus provide an opportunity for more effective targeted therapy. Citation Format: Erin Smithberger, Abigail K. Shelton, Madison K. Butler, Alex R. Flores, Ryan E. Bash, Steven P. Angus, Noah Sciaky, Harshil D. Dhruv, Gary L. Johnson, Michael E. Berens, Frank B. Furnari, C. Ryan Miller. Dynamic kinome profiling of EGFRvIII-driven murine astrocyte models of glioblastoma reveals targets for dual kinase inhibitor therapy [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3019.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...