GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 3437-3437
    Abstract: Myxoid liposarcomas (MLS) account for 20% of malignant adipocytic tumors and are characterized by a high rate of local recurrence and development of distant metastases in approximately 40% of patients. Most MLS are driven by the FUS-DDIT3 fusion gene encoding an aberrant transcription factor. The mechanisms whereby FUS-DDIT3 mediates sarcomagenesis are incompletely understood, and strategies to selectively target MLS cells remain elusive. In this study, we employed genome-scale RNA interference (RNAi) screening to uncover that human mesenchymal stem cells engineered to express FUS-DDIT3 and MLS cell lines are dependent on YAP1, a transcriptional co-activator and central effector of the Hippo pathway involved in tissue growth and tumorigenesis. Analysis of a large cohort of primary MLS specimens (n=223) revealed that nuclear YAP1 expression was significantly more prevalent in MLS compared to other liposarcoma subtypes. In support of the concept that increased YAP1-mediated transcriptional activity represents an essential feature of MLS development, RNAi-based YAP1 depletion in cultured MLS cells resulted in suppression of cell viability, cell cycle arrest, cellular senescence, and induction of apoptosis accompanied by decreased YAP1 target gene expression, and YAP1-positive primary MLS tumors showed strong expression of YAP1 downstream effectors such as FOXM1 and PLK1. Mechanistically, FUS-DDIT3 promotes YAP1 transcription, nuclear localization, and transcriptional activity and physically associates with YAP1 in the nucleus of MLS cells, pointing to the coordinate establishment of gene expression programs that promote MLS tumorigenesis. Consistent with the hypothesis that a YAP1-directed therapeutic approach could represent a rational strategy to selectively target FUS-DDIT3-expressing MLS cells, pharmacologic inhibition of YAP1 activity with verteporfin suppressed cell viability and YAP1 target gene expression in MLS cell lines, and the growth-inhibitory effects of YAP1 knockdown or verteporfin treatment could be recapitulated in MLS cell line-based xenograft models. Collectively, our data identify dependence on aberrant YAP1 activity as specific liability of FUS-DDIT3-expressing MLS cells, and provide preclinical evidence that YAP1-mediated signal transduction represents a candidate target for therapeutic intervention that warrants further investigation. Citation Format: Marcel Trautmann, Ya-Yun Cheng, Patrizia Jensen, Ninel Azoitei, Ines Brunner, Jennifer Hüllein, Mikolaj Slabicki, Ilka Isfort, Magdalene Cyra, Eva Wardelmann, Sebastian Huss, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Anders Ståhlberg, Pierre Åman, Thorsten Zenz, Undine Lange, Thomas Kindler, Claudia Scholl, Wolfgang Hartmann, Stefan Fröhling. Requirement for YAP1 signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 3437.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 78, No. 13_Supplement ( 2018-07-01), p. 3939-3939
    Abstract: Introduction: Myxoid liposarcoma (MLS) is the second most common type of liposarcoma and characterized by a high tendency to develop metastases. The molecular hallmark of MLS (≈90%) is a pathognomonic reciprocal t(12;16) (q13;p11) translocation, leading to the specific gene fusion of FUS and DDIT3. The resulting chimeric FUS-DDIT3 fusion protein is suggested to play a crucial role in MLS tumorigenesis, although its specific biological function and mechanism of action remain to be substantiated. While radiotherapy and chemotherapy with high-dose ifosfamide and doxorubicin represent established therapeutic options, prognosis in the metastasized situation is poor. Molecularly targeted therapeutic approaches are currently not available. Aiming at the preclinical identification of novel therapeutic options, we here investigate the functional relevance of phosphatidylinositol-3'-kinase (PI3-kinase)/Akt signaling in MLS. Experimental procedures: Immunohistochemical and FISH analyses of PI3-kinase/Akt signaling effectors were performed in a large cohort of clinical MLS tumor specimens. Mutational burden was studied by targeted next-generation sequencing (NGS; Illumina MiSeq). PI3-kinase/Akt-mediated signaling transduction was modulated by specific RNAi knockdown and a pharmacological approach applying the small molecule inhibitor BKM120 (Buparlisib; NVP-BKM120). Cell proliferation and FACS assays were performed in different MLS cell lines. An established MLS chorioallantoic membrane model (CAM) was employed for in vivo confirmation of the preclinical in vitro data. Results: In a significant subset of MLS tumor specimens, immunohistochemical staining revealed elevated phosphorylation levels of various signaling components, indicating that activation of PI3-kinase/Akt signaling is a frequent feature in MLS. Activating PIK3CA mutations and loss of PTEN as mechanism for PI3-kinase/Akt activation were detected in ≈15%. PI3-kinase inhibition significantly suppressed the signaling cascade, associated with reduction of MLS cell viability and induction of apoptosis in vitro and in vivo. Conclusions: Our preclinical study emphasizes the pivotal role of the PI3-kinase/Akt signaling cascade in MLS pathogenesis and indicates the occurrence of specific mutational aberrations apart from the pathognomonic FUS-DDIT3 gene fusion. Our in vitro and in vivo results suggest that targeting the PI3-kinase/Akt signaling pathway provides a rational, molecularly founded therapeutic strategy in the treatment of MLS. Citation Format: Marcel Trautmann, Magdalene Cyra, Christian Bertling, Ilka Isfort, Bianca Altvater, Claudia Rossig, Susanne Hafner, Thomas Simmet, Jessica Becker, Inga Grünewald, Pierre Åman, Reinhard Büttner, Eva Wardelmann, Sebastian Huss, Wolfgang Hartmann. Activation of phosphatidylinositol-3′-kinase/Akt signaling in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 3939.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2018
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: EMBO Molecular Medicine, EMBO, Vol. 11, No. 5 ( 2019-05)
    Type of Medium: Online Resource
    ISSN: 1757-4676 , 1757-4684
    Language: English
    Publisher: EMBO
    Publication Date: 2019
    detail.hit.zdb_id: 2485479-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2019
    In:  Cancer Research Vol. 79, No. 13_Supplement ( 2019-07-01), p. 1257-1257
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 79, No. 13_Supplement ( 2019-07-01), p. 1257-1257
    Abstract: Introduction: Myxoid Liposarcoma (MLS) is an aggressive soft tissue tumor, characterized by a high rate of local recurrence and development of distant metastases. Most MLS are driven by a specific reciprocal t(12;16) translocation, and the resulting chimeric FUS-DDIT3 fusion protein acts as an oncogenic transcription factor. Although MLS display a higher chemosensitivity than other liposarcoma subtypes, the substantial rate of recurrence and metastasis in MLS underlines the urgent need for novel, biology- guided therapeutic strategies. As the mechanisms of FUS-DDIT3 mediating MLS pathogenesis are incompletely understood, we here investigate the functional relevance of the transcription factor CREB in MLS cells in vitro and in vivo. Experimental procedures: In a large cohort of MLS tissue specimens (n=92), CREB (S133) and transcriptional targets such as Rb, Cyclin D1, PCNA and Bcl-xL were analyzed by immunohistochemistry. The functional interplay between CREB and FUS-DDIT3 was analyzed by RNAi-mediated knockdown of the chimeric fusion protein in MLS cells and induced expression of FUS-DDIT3 in human mesenchymal stem cells. CREB-mediated transcriptional activity was modulated by CREB-specific siRNA and treatment with small molecule inhibitors (666-15, KG-501, NASTRp and Ro-318220). The biological effects on MLS cell proliferation were monitored by cell viability, apoptosis and immunoblotting assays. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation. Results: Elevated CREB phosphorylation (S133) was demonstrated in 60% of MLS tissue specimens by immunohistochemistry. In MLS cells, RNAi-mediated knockdown of FUS-DDIT3 lead to decreased phosphorylation levels of CREB (S133), accompanied by reduced transcriptional activity. Induced expression of FUS-DDIT3 in human mesenchymal stem cells stimulated phosphorylation of CREB (S133) and CREB target gene expression. Phosphorylation of CREB (S133) was induced by IGF-II stimulation and reduced by RNAi-mediated knockdown of IGF-IR. MLS cell viability was significantly reduced by specific RNAi-mediated knockdown of CREB and treatment with small molecule inhibitors (666-15, KG-501, NASTRp and Ro-318220) in vitro and in vivo. Conclusions: Our preclinical study demonstrates the essential role of CREB-mediated transcriptional activity in myxoid liposarcoma tumorigenesis and provides a molecularly based rationale for a novel targeted therapeutic approach. Citation Format: Magdalene Cyra, Sebastian Huss, Miriam Schulte, Ilka Isfort, Susanne Hafner, Thomas Simmet, Thomas Kindler, Pierre Åman, Eva Wardelmann, Wolfgang Hartmann, Marcel Trautmann. The transcription factor CREB is essential in myxoid liposarcoma [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2019; 2019 Mar 29-Apr 3; Atlanta, GA. Philadelphia (PA): AACR; Cancer Res 2019;79(13 Suppl):Abstract nr 1257.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 23, No. 20 ( 2017-10-15), p. 6227-6238
    Abstract: Purpose: Myxoid liposarcoma is an aggressive disease with particular propensity to develop hematogenic metastases. Over 90% of myxoid liposarcoma are characterized by a reciprocal t(12;16)(q13;p11) translocation. The resulting chimeric FUS–DDIT3 fusion protein plays a crucial role in myxoid liposarcoma pathogenesis; however, its specific impact on oncogenic signaling pathways remains to be substantiated. We here investigate the functional role of FUS–DDIT3 in IGF-IR/PI3K/Akt signaling driving myxoid liposarcoma pathogenesis. Experimental Design: Immunohistochemical evaluation of key effectors of the IGF-IR/PI3K/Akt signaling axis was performed in a comprehensive cohort of myxoid liposarcoma specimens. FUS–DDIT3 dependency and biological function of the IGF-IR/PI3K/Akt signaling cascade were analyzed using a HT1080 fibrosarcoma-based myxoid liposarcoma tumor model and multiple tumor–derived myxoid liposarcoma cell lines. An established myxoid liposarcoma avian chorioallantoic membrane model was used for in vivo confirmation of the preclinical in vitro results. Results: A comprehensive subset of myxoid liposarcoma specimens showed elevated expression and phosphorylation levels of various IGF-IR/PI3K/Akt signaling effectors. In HT1080 fibrosarcoma cells, overexpression of FUS-DDIT3 induced aberrant IGF-IR/PI3K/Akt pathway activity, which was dependent on transcriptional induction of the IGF2 gene. Conversely, RNAi-mediated FUS–DDIT3 knockdown in myxoid liposarcoma cells led to an inactivation of IGF-IR/PI3K/Akt signaling associated with diminished IGF2 mRNA expression. Treatment of myxoid liposarcoma cell lines with several IGF-IR inhibitors resulted in significant growth inhibition in vitro and in vivo. Conclusions: Our preclinical study substantiates the fundamental role of the IGF-IR/PI3K/Akt signaling pathway in myxoid liposarcoma pathogenesis and provides a mechanism-based rationale for molecular- targeted approaches in myxoid liposarcoma cancer therapy. Clin Cancer Res; 23(20); 6227–38. ©2017 AACR.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Molecular Cancer Therapeutics, American Association for Cancer Research (AACR), Vol. 18, No. 4 ( 2019-04-01), p. 834-844
    Abstract: Myxoid liposarcoma (MLS) is an aggressive soft-tissue tumor characterized by a specific reciprocal t(12;16) translocation resulting in expression of the chimeric FUS–DDIT3 fusion protein, an oncogenic transcription factor. Similar to other translocation-associated sarcomas, MLS is characterized by a low frequency of somatic mutations, albeit a subset of MLS has previously been shown to be associated with activating PIK3CA mutations. This study was performed to assess the prevalence of PI3K/Akt signaling alterations in MLS and the potential of PI3K-directed therapeutic concepts. In a large cohort of MLS, key components of the PI3K/Akt signaling cascade were evaluated by next generation seqeuncing (NGS), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). In three MLS cell lines, PI3K activity was inhibited by RNAi and the small-molecule PI3K inhibitor BKM120 (buparlisib) in vitro. An MLS cell line–based avian chorioallantoic membrane model was applied for in vivo confirmation. In total, 26.8% of MLS cases displayed activating alterations in PI3K/Akt signaling components, with PIK3CA gain-of-function mutations representing the most prevalent finding (14.2%). IHC suggested PI3K/Akt activation in a far larger subgroup of MLS, implying alternative mechanisms of pathway activation. PI3K-directed therapeutic interference showed that MLS cell proliferation and viability significantly depended on PI3K-mediated signals in vitro and in vivo. Our preclinical study underlines the elementary role of PI3K/Akt signals in MLS tumorigenesis and provides a molecularly based rationale for a PI3K-targeted therapeutic approach which may be particularly effective in the subgroup of tumors carrying activating genetic alterations in PI3K/Akt signaling components.
    Type of Medium: Online Resource
    ISSN: 1535-7163 , 1538-8514
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 2062135-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 25, No. 12 ( 2019-06-15), p. 3718-3731
    Abstract: Synovial sarcoma is a soft tissue malignancy characterized by a reciprocal t(X;18) translocation. The chimeric SS18-SSX fusion protein acts as a transcriptional dysregulator representing the major driver of the disease; however, the signaling pathways activated by SS18-SSX remain to be elucidated to define innovative therapeutic strategies. Experimental Design: Immunohistochemical evaluation of the Hippo signaling pathway effectors YAP/TAZ was performed in a large cohort of synovial sarcoma tissue specimens. SS18-SSX dependency and biological function of the YAP/TAZ Hippo signaling cascade were analyzed in five synovial sarcoma cell lines and a mesenchymal stem cell model in vitro. YAP/TAZ-TEAD–mediated transcriptional activity was modulated by RNAi-mediated knockdown and the small-molecule inhibitor verteporfin. The effects of verteporfin were finally tested in vivo in synovial sarcoma cell line-based avian chorioallantoic membrane and murine xenograft models as well as a patient-derived xenograft. Results: A significant subset of synovial sarcoma showed nuclear positivity for YAP/TAZ and their transcriptional targets FOXM1 and PLK1. In synovial sarcoma cells, RNAi-mediated knockdown of SS18-SSX led to significant reduction of YAP/TAZ-TEAD transcriptional activity. Conversely, SS18-SSX overexpression in SCP-1 cells induced aberrant YAP/TAZ-dependent signals, mechanistically mediated by an IGF-II/IGF-IR signaling loop leading to dysregulation of the Hippo effectors LATS1 and MOB1. Modulation of YAP/TAZ-TEAD–mediated transcriptional activity by RNAi or verteporfin treatment resulted in significant growth inhibitory effects in vitro and in vivo. Conclusions: Our preclinical study identifies an elementary role of SS18-SSX–driven YAP/TAZ signals, highlights the complex network of oncogenic signaling pathways in synovial sarcoma pathogenesis, and provides evidence for innovative therapeutic approaches.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2019
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-12-23)
    Abstract: Tumors of soft tissue and bone represent a heterogeneous group of neoplasias characterized by a wide variety of genetic aberrations. Albeit knowledge on tumorigenesis in mesenchymal tumors is continuously increasing, specific insights on altered signaling pathways as a basis for molecularly targeted therapeutic strategies are still sparse. The aim of this study was to determine the involvement of YAP1/TAZ-mediated signals in tumors of soft tissue and bone. Expression levels of YAP1 and TAZ were analyzed by immunohistochemistry in a large cohort of 486 tumor specimens, comprising angiosarcomas (AS), Ewing sarcomas, leiomyosarcomas, malignant peripheral nerve sheath tumors (MPNST), solitary fibrous tumors, synovial sarcomas (SySa), well-differentiated/dedifferentiated/pleomorphic and myxoid liposarcomas (MLS). Moderate to strong nuclear staining of YAP1 and TAZ was detected in 53% and 33%, respectively. YAP1 nuclear expression was most prevalent in MPNST, SySa and MLS, whereas nuclear TAZ was predominately detected in AS, MLS and MPNST. In a set of sarcoma cell lines, immunoblotting confirmed nuclear localization of YAP1 and TAZ, corresponding to their transcriptionally active pool. Suppression of YAP1/TAZ-TEAD mediated transcriptional activity significantly impaired sarcoma cell viability in vitro and in vivo . Our findings identify nuclear YAP1 and TAZ positivity as a common feature in subsets of sarcomas of soft tissue and bone and provide evidence of YAP1/TAZ-TEAD signaling as a specific liability to be considered as a new target for therapeutic intervention. Nuclear YAP1/TAZ expression may represent a biomarker suited to identify patients that could benefit from YAP1/TAZ-TEAD directed therapeutic approaches within future clinical trials.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Cellular Oncology, Springer Science and Business Media LLC, Vol. 45, No. 3 ( 2022-06), p. 399-413
    Abstract: Synovial sarcoma (SySa) is a rare soft tissue tumor characterized by a reciprocal t(X;18) translocation. The chimeric SS18-SSX fusion protein represents the major driver of the disease, acting as aberrant transcriptional dysregulator. Oncogenic mechanisms whereby SS18-SSX mediates sarcomagenesis are incompletely understood, and strategies to selectively target SySa cells remain elusive. Based on results of Phospho-Kinase screening arrays, we here investigate the functional and therapeutic relevance of the transcription factor CREB in SySa tumorigenesis. Methods Immunohistochemistry of phosphorylated CREB and its downstream targets (Rb, Cyclin D1, PCNA, Bcl-xL and Bcl-2) was performed in a large cohort of SySa. Functional aspects of CREB activity, including SS18-SSX driven circuits involved in CREB activation, were analyzed in vitro employing five SySa cell lines and a mesenchymal stem cell model. CREB mediated transcriptional activity was modulated by RNAi-mediated knockdown and small molecule inhibitors (666-15, KG-501, NASTRp and Ro 31-8220). Anti-proliferative effects of the CREB inhibitor 666-15 were tested in SySa avian chorioallantoic membrane and murine xenograft models in vivo. Results We show that CREB is phosphorylated and activated in SySa, accompanied by downstream target expression. Human mesenchymal stem cells engineered to express SS18-SSX promote CREB expression and phosphorylation. Conversely, RNAi-mediated knockdown of SS18-SSX impairs CREB phosphorylation in SySa cells. Inhibition of CREB activity reduces downstream target expression, accompanied by suppression of SySa cell proliferation and induction of apoptosis in vitro and in vivo . Conclusion In conclusion, our data underline an essential role of CREB in SySa tumorigenesis and provides evidence for molecular targeted therapies.
    Type of Medium: Online Resource
    ISSN: 2211-3428 , 2211-3436
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2595105-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...