GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 80, No. 24 ( 2020-12-15), p. 5606-5618
    Abstract: POLE mutations are a major cause of hypermutant cancers, yet questions remain regarding mechanisms of tumorigenesis, genotype–phenotype correlation, and therapeutic considerations. In this study, we establish mouse models harboring cancer-associated POLE mutations P286R and S459F, which cause rapid albeit distinct time to cancer initiation in vivo, independent of their exonuclease activity. Mouse and human correlates enabled novel stratification of POLE mutations into three groups based on clinical phenotype and mutagenicity. Cancers driven by these mutations displayed striking resemblance to the human ultrahypermutation and specific signatures. Furthermore, Pole-driven cancers exhibited a continuous and stochastic mutagenesis mechanism, resulting in intertumoral and intratumoral heterogeneity. Checkpoint blockade did not prevent Pole lymphomas, but rather likely promoted lymphomagenesis as observed in humans. These observations provide insights into the carcinogenesis of POLE-driven tumors and valuable information for genetic counseling, surveillance, and immunotherapy for patients. Significance: Two mouse models of polymerase exonuclease deficiency shed light on mechanisms of mutation accumulation and considerations for immunotherapy. See related commentary by Wisdom and Kirsch p. 5459
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2020
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 5 ( 2021-05-01), p. 1176-1191
    Abstract: Although replication repair deficiency, either by mismatch repair deficiency (MMRD) and/or loss of DNA polymerase proofreading, can cause hypermutation in cancer, microsatellite instability (MSI) is considered a hallmark of MMRD alone. By genome-wide analysis of tumors with germline and somatic deficiencies in replication repair, we reveal a novel association between loss of polymerase proofreading and MSI, especially when both components are lost. Analysis of indels in microsatellites (MS-indels) identified five distinct signatures (MS-sigs). MMRD MS-sigs are dominated by multibase losses, whereas mutant-polymerase MS-sigs contain primarily single-base gains. MS deletions in MMRD tumors depend on the original size of the MS and converge to a preferred length, providing mechanistic insight. Finally, we demonstrate that MS-sigs can be a powerful clinical tool for managing individuals with germline MMRD and replication repair–deficient cancers, as they can detect the replication repair deficiency in normal cells and predict their response to immunotherapy. Significance: Exome- and genome-wide MSI analysis reveals novel signatures that are uniquely attributed to mismatch repair and DNA polymerase. This provides new mechanistic insight into MS maintenance and can be applied clinically for diagnosis of replication repair deficiency and immunotherapy response prediction. This article is highlighted in the In This Issue feature, p. 995
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Cancer Discovery, American Association for Cancer Research (AACR), Vol. 11, No. 6 ( 2021-06-01), p. 1454-1467
    Abstract: The RAS/MAPK pathway is an emerging targeted pathway across a spectrum of both adult and pediatric cancers. Typically, this is associated with a single, well-characterized point mutation in an oncogene. Hypermutant tumors that harbor many somatic mutations may obscure the interpretation of such targetable genomic events. We find that replication repair–deficient (RRD) cancers, which are universally hypermutant and affect children born with RRD cancer predisposition, are enriched for RAS/MAPK mutations (P = 10−8). These mutations are not random, exist in subclones, and increase in allelic frequency over time. The RAS/MAPK pathway is activated both transcriptionally and at the protein level in patient-derived RRD tumors, and these tumors responded to MEK inhibition in vitro and in vivo. Treatment of patients with RAS/MAPK hypermutant gliomas reveals durable responses to MEK inhibition. Our observations suggest that hypermutant tumors may be addicted to oncogenic pathways, resulting in favorable response to targeted therapies. Significance: Tumors harboring a single RAS/MAPK driver mutation are targeted individually for therapeutic purposes. We find that in RRD hypermutant cancers, mutations in the RAS/MAPK pathway are enriched, highly expressed, and result in sensitivity to MEK inhibitors. Targeting an oncogenic pathway may provide therapeutic options for these hypermutant polyclonal cancers. This article is highlighted in the In This Issue feature, p. 1307
    Type of Medium: Online Resource
    ISSN: 2159-8274 , 2159-8290
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2607892-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 34, No. 19 ( 2016-07-01), p. 2206-2211
    Abstract: Recurrent glioblastoma multiforme (GBM) is incurable with current therapies. Biallelic mismatch repair deficiency (bMMRD) is a highly penetrant childhood cancer syndrome often resulting in GBM characterized by a high mutational burden. Evidence suggests that high mutation and neoantigen loads are associated with response to immune checkpoint inhibition. Patients and Methods We performed exome sequencing and neoantigen prediction on 37 bMMRD cancers and compared them with childhood and adult brain neoplasms. Neoantigen prediction bMMRD GBM was compared with responsive adult cancers from multiple tissues. Two siblings with recurrent multifocal bMMRD GBM were treated with the immune checkpoint inhibitor nivolumab. Results All malignant tumors (n = 32) were hypermutant. Although bMMRD brain tumors had the highest mutational load because of secondary polymerase mutations (mean, 17,740 ± standard deviation, 7,703), all other high-grade tumors were hypermutant (mean, 1,589 ± standard deviation, 1,043), similar to other cancers that responded favorably to immune checkpoint inhibitors. bMMRD GBM had a significantly higher mutational load than sporadic pediatric and adult gliomas and all other brain tumors (P 〈 .001). bMMRD GBM harbored mean neoantigen loads seven to 16 times higher than those in immunoresponsive melanomas, lung cancers, or microsatellite-unstable GI cancers (P 〈 .001). On the basis of these preclinical data, we treated two bMMRD siblings with recurrent multifocal GBM with the anti–programmed death-1 inhibitor nivolumab, which resulted in clinically significant responses and a profound radiologic response. Conclusion This report of initial and durable responses of recurrent GBM to immune checkpoint inhibition may have implications for GBM in general and other hypermutant cancers arising from primary (genetic predisposition) or secondary MMRD.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2016
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Journal of Clinical Oncology, American Society of Clinical Oncology (ASCO), Vol. 33, No. 9 ( 2015-03-20), p. 1015-1022
    Abstract: To uncover the genetic events leading to transformation of pediatric low-grade glioma (PLGG) to secondary high-grade glioma (sHGG). Patients and Methods We retrospectively identified patients with sHGG from a population-based cohort of 886 patients with PLGG with long clinical follow-up. Exome sequencing and array CGH were performed on available samples followed by detailed genetic analysis of the entire sHGG cohort. Clinical and outcome data of genetically distinct subgroups were obtained. Results sHGG was observed in 2.9% of PLGGs (26 of 886 patients). Patients with sHGG had a high frequency of nonsilent somatic mutations compared with patients with primary pediatric high-grade glioma (HGG; median, 25 mutations per exome; P = .0042). Alterations in chromatin-modifying genes and telomere-maintenance pathways were commonly observed, whereas no sHGG harbored the BRAF-KIAA1549 fusion. The most recurrent alterations were BRAF V600E and CDKN2A deletion in 39% and 57% of sHGGs, respectively. Importantly, all BRAF V600E and 80% of CDKN2A alterations could be traced back to their PLGG counterparts. BRAF V600E distinguished sHGG from primary HGG (P = .0023), whereas BRAF and CDKN2A alterations were less commonly observed in PLGG that did not transform (P 〈 .001 and P 〈 .001 respectively). PLGGs with BRAF mutations had longer latency to transformation than wild-type PLGG (median, 6.65 years [range, 3.5 to 20.3 years] v 1.59 years [range, 0.32 to 15.9 years] , respectively; P = .0389). Furthermore, 5-year overall survival was 75% ± 15% and 29% ± 12% for children with BRAF mutant and wild-type tumors, respectively (P = .024). Conclusion BRAF V600E mutations and CDKN2A deletions constitute a clinically distinct subtype of sHGG. The prolonged course to transformation for BRAF V600E PLGGs provides an opportunity for surgical interventions, surveillance, and targeted therapies to mitigate the outcome of sHGG.
    Type of Medium: Online Resource
    ISSN: 0732-183X , 1527-7755
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Clinical Oncology (ASCO)
    Publication Date: 2015
    detail.hit.zdb_id: 2005181-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 81, No. 13_Supplement ( 2021-07-01), p. 636-636
    Abstract: Background: Over 4300 children, adolescents, and young adults (CAYA) are diagnosed with cancer each year in Canada, 1/3 of whom have refractory/metastatic disease or will relapse. A national collaborative program, PRecision Oncology For Young peopLE (PROFYLE), was created with the goal to develop and implement a pipeline providing access to tumor molecular profiling to identify novel targeted treatment options in a clinically relevant timeframe for CAYA with hard-to-treat cancers. Design: PROFYLE unites 21 institutions, building upon 3 pre-existing regional pediatric precision oncology programs (Personalized Oncogenomics (POG), SickKids Cancer Sequencing (KiCS), and Personalized Targeted Therapy in Refractory or Relapsed Cancer in Childhood (TRICEPS)). PROFYLE nodes (genomics/bioinformatics, proteomics, modeling, biomarkers, data/biobanking, therapeutics, bioethics, policy, AYA) are unified by a shared governance structure. PROFYLE includes genomic and transcriptomic sequencing of paired germline/cancer fresh/frozen samples. Inclusion criteria: ≤29y; treatment at a Canadian center; diagnosis of a hard-to-treat cancer. Profiling results are reviewed by multidisciplinary Molecular Tumor Boards. A report including a results/recommendations summary of actionable findings (therapeutic, diagnostic, prognostic, cancer predisposition), potential targeted therapy options including available clinical trials, clarification of diagnosis, and genetic counseling referral is provided to the treating oncologist. Results: To date, & gt;800 CAYA are enrolled in PROFYLE and POG, KiCS, TRICEPS. Cancer diagnoses: 35% sarcoma, 18% leukemia/lymphoma, 14% CNS tumor, 14% neuroblastoma, 19% other. At study entry, 44% of participants had not relapsed, 39% 1 relapse, 14% 2 relapses, and 3% 3+ relapses. 13% had a cancer-predisposing pathogenic/likely pathogenic germline variant, 39% had ≥1 potentially actionable somatic alteration, and 13% had a therapeutically targetable somatic alteration. The most frequent classes of alterations were RAS/MAPK, immune checkpoint, cell cycle, DNA repair, epigenetic, PI3K/AKT/mTOR, RTK. Of clinicians who reported the utility of results, 78% indicated the findings had the potential to inform a medical decision. Future Directions: We will build on PROFYLE's success by addressing the challenge of real-time availability of target-based therapies through innovative clinical trial strategies incorporating new drugs, off-label use, drug combinations, basket and single patient study designs to enable improved access to therapies for CAYA with actionable molecular targets. We will work on policy-relevant research to facilitate implementation of precision oncology care for CAYA in Canada. We will leverage knowledge developed by PROFYLE thus far by integrating omics, modeling and biomarkers research in the trials being developed. Citation Format: Stephanie A. Grover, Thierry Alcindor, Jason N. Berman, Jennifer A. Chan, Avram E. Denburg, Rebecca J. Deyell, David D. Eisenstat, Conrad V. Fernandez, Paul E. Grundy, Abha Gupta, Cynthia Hawkins, Meredith S. Irwin, Nada Jabado, Steven J. Jones, Michael F. Moran, Daniel A. Morgenstern, Shahrad R. Rassekh, Adam Shlien, Daniel Sinnett, Poul H. Sorensen, Patrick J. Sullivan, Michael D. Taylor, Anita Villani, James A. Whitlock, David Malkin, on behalf of the Terry Fox PROFYLE Consortium. PROFYLE: The pan-Canadian precision oncology program for children, adolescents and young adults with hard-to-treat cancer [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2021; 2021 Apr 10-15 and May 17-21. Philadelphia (PA): AACR; Cancer Res 2021;81(13_Suppl):Abstract nr 636.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2021
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 47, No. 3 ( 2015-3), p. 257-262
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1494946-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Nature Medicine, Springer Science and Business Media LLC, Vol. 28, No. 1 ( 2022-01), p. 125-135
    Abstract: Cancers arising from germline DNA mismatch repair deficiency or polymerase proofreading deficiency (MMRD and PPD) in children harbour the highest mutational and microsatellite insertion–deletion (MS-indel) burden in humans. MMRD and PPD cancers are commonly lethal due to the inherent resistance to chemo-irradiation. Although immune checkpoint inhibitors (ICIs) have failed to benefit children in previous studies, we hypothesized that hypermutation caused by MMRD and PPD will improve outcomes following ICI treatment in these patients. Using an international consortium registry study, we report on the ICI treatment of 45 progressive or recurrent tumors from 38 patients. Durable objective responses were observed in most patients, culminating in a 3 year survival of 41.4%. High mutation burden predicted response for ultra-hypermutant cancers ( 〉 100 mutations per Mb) enriched for combined MMRD + PPD, while MS-indels predicted response in MMRD tumors with lower mutation burden (10–100 mutations per Mb). Furthermore, both mechanisms were associated with increased immune infiltration even in ‘immunologically cold’ tumors such as gliomas, contributing to the favorable response. Pseudo-progression (flare) was common and was associated with immune activation in the tumor microenvironment and systemically. Furthermore, patients with flare who continued ICI treatment achieved durable responses. This study demonstrates improved survival for patients with tumors not previously known to respond to ICI treatment, including central nervous system and synchronous cancers, and identifies the dual roles of mutation burden and MS-indels in predicting sustained response to immunotherapy.
    Type of Medium: Online Resource
    ISSN: 1078-8956 , 1546-170X
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 1484517-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature Cancer, Springer Science and Business Media LLC, Vol. 4, No. 2 ( 2022-12-30), p. 203-221
    Abstract: We conducted integrative somatic–germline analyses by deeply sequencing 864 cancer-associated genes, complete genomes and transcriptomes for 300 mostly previously treated children and adolescents/young adults with cancer of poor prognosis or with rare tumors enrolled in the SickKids Cancer Sequencing (KiCS) program. Clinically actionable variants were identified in 56% of patients. Improved diagnostic accuracy led to modified management in a subset. Therapeutically targetable variants (54% of patients) were of unanticipated timing and type, with over 20% derived from the germline. Corroborating mutational signatures (SBS3/BRCAness) in patients with germline homologous recombination defects demonstrates the potential utility of PARP inhibitors. Mutational burden was significantly elevated in 9% of patients. Sequential sampling identified changes in therapeutically targetable drivers in over one-third of patients, suggesting benefit from rebiopsy for genomic analysis at the time of relapse. Comprehensive cancer genomic profiling is useful at multiple points in the care trajectory for children and adolescents/young adults with cancer, supporting its integration into early clinical management.
    Type of Medium: Online Resource
    ISSN: 2662-1347
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 3005299-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 82, No. 12_Supplement ( 2022-06-15), p. 5224-5224
    Abstract: Background: Over 4,300 children, adolescents, and young adults (CAYA) are diagnosed with cancer each year in Canada, 1/3 of whom have refractory/metastatic disease or will relapse. A national collaborative program, PRecision Oncology For Young peopLE (PROFYLE), was created with the goal to develop and implement a pipeline providing access to tumor molecular profiling to identify novel targeted treatment options in a clinically relevant timeframe for CAYA with hard-to-cure cancers. Design: PROFYLE includes more than 20 institutions, building upon 3 pre-existing regional precision oncology programs (Personalized Oncogenomics (POG), SickKids Cancer Sequencing (KiCS), and Personalized Targeted Therapy in Refractory or Relapsed Cancer in Childhood (TRICEPS)). PROFYLE has united an interdisciplinary team of experts, leaders, research team, end-users and advocates from across Canada to form 14 domain specific nodes unified by a shared governance structure. PROFYLE includes genomic and transcriptomic sequencing of paired germline/cancer fresh/frozen samples. Inclusion criteria: ≤29y; treatment at a Canadian center; diagnosis of a hard-to-cure cancer. Profiling results are reviewed by multidisciplinary Molecular Tumor Boards. A report including a results/recommendations summary of actionable findings (therapeutic, diagnostic, prognostic, cancer predisposition), potential targeted therapy options including available clinical trials, clarification of diagnosis, and genetic counseling recommendations is provided to the treating oncologist. Results: To date, & gt;900 CAYA are enrolled. Cancer diagnoses: 36% sarcoma, 16% leukemia/lymphoma, 16% CNS tumor, 13% neuroblastoma, 19% other. At study entry, 44% of participants had not relapsed, 40% had 1 relapse, 9% 2 relapses, 4% 3+ relapses. 17% had a cancer-predisposing pathogenic/likely pathogenic germline variant, 40% had ≥1 potentially actionable somatic alteration, 9.7% had a therapeutically targetable somatic alteration. The most frequent classes of therapeutic alterations were cell cycle (15%), RAS/MAPK (14%), epigenetic (13%), RTK (12%), PI3K/AKT/mTOR (10%), DNA repair (9%), immune checkpoint (8%). Of clinicians who reported the utility of results, 56% indicated the findings were useful for clinical management. Future Directions: With a comprehensive molecular view of cancer, PROFYLE will transform our understanding of underlying disease mechanisms, facilitate and improve diagnostic and prognostic indicators, and identify new therapeutic strategies and targets. Data from this interdisciplinary, multi-institutional research program will inform the development of a framework to innovatively link research, clinical and system considerations with Canadian values relevant to genomic profiling and drug access for CAYA in Canada. Citation Format: Stephanie A. Grover, Lesleigh Abbott, Jason N. Berman, Jennifer A. Chan, Avram E. Denburg, Rebecca J. Deyell, Conrad V. Fernandez, Cynthia Hawkins, Jan-Willem Henning, Meredith S. Irwin, Nada Jabado, Steven J. Jones, Philipp F. Lange, Michael F. Moran, Daniel A. Morgenstern, Antonia Palmer, Shahrad R. Rassekh, Donna L. Senger, Adam Shlien, Daniel Sinnett, Caron Strahlendorf, Patrick J. Sullivan, Michael D. Taylor, Suzanne Vercauteren, Anita Villani, James A. Whitlock, David Malkin, on behalf of the Terry Fox PROFYLE Consortium. The PRecision Oncology For Young peopLE (PROFYLE) Program: A national precision oncology program for children, adolescents and young adults with hard-to-cure cancer in Canada [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr 5224.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...