GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (7)
  • Shin, Bhum Jae  (7)
  • 1
    In: Polymers, MDPI AG, Vol. 14, No. 8 ( 2022-04-10), p. 1535-
    Abstract: This study systematically investigated an atmospheric pressure plasma reactor with a centered single pin electrode inside a dielectric tube for depositing the polyaniline (PANI) thin film based on the experimental case studies relative to variations in pin electrode configurations (cases I, II, and III), bluff-body heights, and argon (Ar) gas flow rates. In these cases, the intensified charge-coupled device and optical emission spectroscopy were analyzed to investigate the factors affecting intensive glow-like plasma generation for deposition with a large area. Compared to case I, the intense glow-like plasma of the cases II and III generated abundant reactive nitrogen species (RNSs) and excited argon radical species for fragmentation and recombination of PANI. In case III, the film thickness and deposition rate of the PANI thin film were about 450 nm and 7.5 nm/min, respectively. This increase may imply that the increase in the excited radical species contributes to the fragmentation and recombination due to the increase in RNSs and excited argon radicals during the atmospheric pressure (AP) plasma polymerization to obtain the PANI thin film. This intense glow-like plasma generated broadly by the AP plasma reactor can uniformly deposit the PANI thin film, which is confirmed by field emission-scanning electron microscopy and Fourier transform infrared spectroscopy.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Polymers, MDPI AG, Vol. 15, No. 7 ( 2023-03-24), p. 1626-
    Abstract: Polyaniline (PANI) was synthesized from liquid aniline, a nitrogen-containing aromatic compound, through the atmospheric pressure (AP) plasma process using a newly designed plasma jet array with wide spacing between plasma jets. To expand the area of the polymerized film, the newly proposed plasma jet array comprises three AP plasma jet devices spaced 7 mm apart in a triangular configuration and an electrodeless quartz tube capable of applying auxiliary gas in the center of the triangular plasma jets. The vaporized aniline monomer was synthesized into a PANI film using the proposed plasma array device. The effects of nitrogen gas addition on the morphological, chemical, and electrical properties of PANI films in AP argon plasma polymerization were examined. The iodine-doped PANI film was isolated from the atmosphere through encapsulation. The constant electrical resistance of the PANI film indicates that the conductive PANI film can achieve the desired resistance by controlling the atmospheric exposure time through encapsulation.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Polymers, MDPI AG, Vol. 11, No. 1 ( 2019-01-09), p. 105-
    Abstract: This work researched polymerization of liquid aniline monomer by solution plasma with a gas bubble channel and investigated characteristics of solution plasma and polyaniline (PANI). The injected gas bubble channel in the proposed solution plasma process (SPP) played a significant role in producing a stable discharge in liquid aniline monomer at a low voltage and furthermore enhancing the contact surface area between liquid aniline monomer and plasma, thereby achieving polymerization on the boundary of the liquid aniline monomer and plasma. Solution plasma properties were analyzed with voltage–current, optical emission spectroscopy, and high-speed camera. Conductivity, percentage yield, and firing voltage of PANI nanoparticle dispersed solution were measured. To investigate the characteristics of synthesized PANI nanoparticles, field emission scanning electron microscopy, dynamic light scattering, transmission electron microscopy, selective area electron diffraction (SAED) pattern, Fourier transform infrared spectroscopy (FTIR), gel permeation chromatography, 1H-nuclear magnetic resonance (1H-NMR), and X-ray photo spectroscopy (XPS) were examined. The FTIR, 1H-NMR, and XPS analysis showed the PANI characteristic peaks with evidence that some quinoid and benzene rings were broken by the solution plasma process with a gas bubble channel. The results indicate that PANI nanoparticles have a spherical shape with a size between 25 and 35 nm. The SAED pattern shows the amorphous pattern.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Polymers, MDPI AG, Vol. 12, No. 10 ( 2020-09-28), p. 2225-
    Abstract: This paper investigates the properties of thiophene and aniline copolymer (TAC) films deposited by using atmospheric pressure plasma jets copolymerization technique relative to various blending ratios of aniline and thiophene monomer for synthesizing the donor–acceptor conjugated copolymers. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy are utilized to measure the surface morphology, roughness and film thickness of TAC films. Structural and chemical properties of TAC films are investigated by Fourier transforms-infrared spectroscopy (FT-IR), time of flight secondary ion mass spectrometry, and X-ray photoelectron spectroscopy. FE-SEM images show that the film thickness and nanoparticles size of the TAC films increase with an addition thiophene monomer in the aniline monomer. FE-SEM, FT-IR results show that TAC films are successfully synthesized on glass substrates in all cases. The iodine doped TAC film on the Si substrate with interdigitated electrodes shows the lowest electrical resistance at blending condition of thiophene of 25%.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Polymers, MDPI AG, Vol. 12, No. 9 ( 2020-08-27), p. 1939-
    Abstract: The quality of polyaniline nanoparticles (PANI NPs) synthesized in plasma polymerization depends on the discharge characteristics of a solution plasma process (SPP). In this paper, the low temperature dielectric barrier discharge (DBD) is introduced to minimize the destruction of aniline molecules induced by the direct current (DC) spark discharge. By adopting the new electrode structure coupled with a gas channel, a low temperature DBD is successfully implemented in a SPP, for the first time, thus inducing an effective interaction between the Ar plasma and aniline monomer. We examine the effects of a low temperature DBD on characteristics of polyaniline nanoparticles synthesized by a SPP with an Ar gas bubble channel. As a result, both carbonization of aniline monomer and erosion of the electrode are significantly reduced, which is confirmed by analyses of the synthesized PANI NPs.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Polymers, MDPI AG, Vol. 13, No. 11 ( 2021-05-28), p. 1783-
    Abstract: New nanostructured conducting porous polythiophene (PTh) films are directly deposited on substrates at room temperature (RT) by novel atmospheric pressure plasma jets (APPJs) polymerization technique. The proposed plasma polymerization synthesis technique can grow the PTh films with a very fast deposition rate of about 7.0 μm·min−1 by improving the sufficient nucleation and fragment of the thiophene monomer. This study also compares pure and iodine (I2)-doped PTh films to demonstrate the effects of I2 doping. To check the feasibility as a sensing material, NO2-sensing properties of the I2-doped PTh films-based gas sensors are also investigated. As a result, the proposed APPJs device can produce the high density, porous and ultra-fast polymer films, and polymers-based gas sensors have high sensitivity to NO2 at RT. Our approach enabled a series of processes from synthesis of sensing materials to fabrication of gas sensors to be carried out simultaneously.
    Type of Medium: Online Resource
    ISSN: 2073-4360
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2527146-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Materials, MDPI AG, Vol. 14, No. 5 ( 2021-03-08), p. 1278-
    Abstract: The use of low-voltage-driven plasma in atmospheric pressure (AP) plasma polymerization is considered as a simple approach to reducing the reactivity of the monomer fragments in order to prevent excessive cross-linking, which would have a negative effect on the structural properties of the polymerized thin films. In this study, AP-plasma polymerization can be processed at low voltage by an AP-plasma reactor with a wire electrode configuration. A bare tungsten wire is used as a powered electrode to initiate discharge in the plasma area (defined as the area between the wide glass tube and the substrate stand), thus allowing plasma polymerization to proceed at a lower voltage compared to other AP-plasma reactors with dielectric barriers. Thus, transparent polyaniline (PANI) films are successfully synthesized. The surface morphology, roughness, and film thickness of the PANI films are characterized by field emission scanning electron microscopy and atomic force microscopy. Thus, the surface of the polymerized film is shown to be homogenous, smooth, and flat, with a low surface roughness of 1 nm. In addition, the structure and chemical properties of the PANI films are investigated by Fourier transform infrared spectroscopy, thus revealing an improvement in the degree of polymerization, even though the process was performed at low voltage.
    Type of Medium: Online Resource
    ISSN: 1996-1944
    Language: English
    Publisher: MDPI AG
    Publication Date: 2021
    detail.hit.zdb_id: 2487261-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...