GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society of Hematology  (5)
  • Shi, Xiangguo  (5)
  • 1
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Vol. 134, No. Supplement_1 ( 2019-11-13), p. 879-879
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 879-879
    Abstract: Acute myeloid leukemia (AML) is primarily a disease of older adults with poor treatment outcomes. Despite years of intensive research, the standard induction therapy for AML has remained largely unchanged for decades. Thus, the development of new and efficacious therapeutic targets for AML is urgently needed. Leukemia cells exhibit multiple metabolic aberrations that may be therapeutically targeted. Here, we show that nicotinamide adenine dinucleotide (NAD+) promotes leukemogenesis and causes chemotherapy treatment resistance through fueling energetic metabolism, and pinpoints nicotinamide nucleotide adenylyltransferase 1 (NMNAT1) is a novel therapeutic target for AML. To identify novel genes essential for AML, we performed a whole genome CRISPR dropout screen by using MOLM13 cell line and identified 1,951 essential genes (Fig. A). By searching druggable targets among these genes, we narrowed down to 345 genes, among which we found two genes, NMNAT1 (nicotinamide nucleotide adenylyltransferase 1) and NAMPT (nicotinamide phosphoribosyltransferase), both involved in key steps in NAD+ biosynthesis. We comprehensively analyzed dependency scores for all genes involved in the NAD+ biosynthetic pathways (de novo synthesis pathway, the Preiss-Handler pathway and the salvage pathway) across a broad panel of cancer cell lines from the Dependency Map database (https://depmap.org/portal/). The results showed that NMNAT1 and NAMPT are both strongly selective and uniquely required for hematological malignancies compared to other cancers (Fig. B). Since little success has been achieved for NAMPT inhibitors in clinical trials, our attention was drawn to NMNAT1, which encodes a nuclear localized enzyme catalyzing the final step in NAD+ biosynthesis. We confirmed that deletion of NMNAT1 in AML cells significantly reduced nuclear NAD+ level and cell viability over time while sparing normal hematopoietic progenitor cells, suggesting that NMNAT1 is targetable to AML. Overexpression of wild-type Nmnat1 but not the enzymatically inactive forms rescued NMNAT1-KO AML, indicating that the catalytic activity of NMNAT1 is required for AML. To study the role of NAD+ in AML, we first measured NAD+ levels in leukemic and normal cells, and found higher NAD+ levels in leukemia-initiating cells from a murine MLL-AF9-induced AML model compared to normal cells. Supplementation of NAD+ metabolites (NMN, NAM and NR) increased AML proliferation, enhanced glycolysis (lactate production) and oxidative phosphorylation (ATP production), resulting in chemotherapy resistance (Fig. C). Deletion of NMNAT1 sensitized AML cell to chemotherapy treatment. To study the role of NMNAT1 in leukemogenesis in vivo, we genetically deleted NMNAT1 in murine or human leukemia cells, transplanted them into recipient mice, and found that deletion of NMNAT1 reduced leukemic burden and extended leukemia-free survival (Fig. D). Finally, to reveal the molecular mechanisms underlying NMNAT1 KO-mediated cell death (increased levels of gamma-H2AX), RNA-seq and functional assay of NAD+ dependent enzymes were performed. We found that the reduction of nuclear NAD+ resulting from NMNAT1 deletion upregulated genes involved in DNA repair pathway, which may be linked to impaired PARPs and Sirtuins activity. Our findings reveal the important function of NAD+ in leukemogenesis and chemoresistance, and identify NMANT1 as a novel therapeutic target for AML. Figure Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 140, No. Supplement 1 ( 2022-11-15), p. 8590-8591
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 2473-2473
    Abstract: The adult hematopoietic system is sustained by a balance of self-renewal and differentiation in a small pool of stem and progenitor cells. This balance must be maintained to ensure a continuous supply of blood cells throughout life and prevent malignancy from arising. There are many facets of epigenetic regulation that are well known to be key components of healthy and diseased hematopoiesis, such as DNA methylation and histone post-translational modifications. However, the role of histone variant incorporation in hematopoiesis remains relatively unexplored. In this study, we explore the role of histone variant H3.3 regulation in the hematopoietic system by assessing the function of the histone H3.3 chaperone, Hira. Toward this goal, we use inducible and early developmental conditional knockout (cKO) mouse models to assess the role of Hira within the hematopoietic system. Following Hira cKO early in hematopoietic development (Vav-iCre; Hirafl/fl), we find that HSPCs are unaffected in the fetal liver but deplete quickly after homing to the bone marrow. Using polyinosinic-polycytidylic (pIpC) inducible Hira cKO mice (Mx1-Cre; Hirafl/fl), we find a similarly severe depletion of HSPCs in adult mice within 1 month after Hira loss. In contrast, differentiated cells remain largely unaffected following Hira cKO, demonstrating that Hira is especially important in the hematopoietic stem and progenitor compartment. Since Hira is known to incorporate H3.3 throughout the cell cycle and not just during S-phase like H3.1/2, we hypothesized that adult HSPCs are more dependent upon Hira to regulate histone H3 dynamics since they are slowly dividing. The loss of Hira-mediated H3.3 deposition would also be particularly detrimental to the function of these cells given its association with actively transcribed and bivalent genes. To test the role of Hira in maintaining gene expression patterns, we performed bulk RNA-seq on adult HSPCs and found that hematopoietic differentiation genes are dysregulated after Hira cKO with increased erythroid lineage and decreased lymphoid lineage gene expression. We then assessed gene expression changes in Hira cKO HSPCs in a doxycycline-inducible H2B-GFP background (Mx1-Cre; Hirafl/fl; R26-M2rtTa; TetOP-H2B-GFP) to distinguish between the gene expression changes caused by Hira loss before and after cell division. In the absence of Hira-mediated H3.3 incorporation, we expect some highly expressed genes in slowly dividing adult HSPCs to be affected by Hira loss prior to cell division due to nucleosome turnover in the wake of RNA Polymerase II. At other loci, like bivalent promoters, H3.3 would be diluted after cell division by H3.1/2 during S-phase in Hira cKO HSPCs. In support of this hypothesis, we found that increased expression of the erythroid differentiation gene Klf1 in Hira cKO MPPs after cell division (H2B-GFPLow) relative to Hira cKO MPPs before division (H2B-GFPHigh) and WT MPPs that have divided (H2B-GFPLow). The findings from both of these transcriptome analyses point toward a role of Hira in regulating HSPC differentiation genes and are supported by our in vitro and in vivo data showing increased differentiation of Hira cKO HSPCs and decreased self-renewal. In order to more fully understand the H3.3-dependent gene expression changes after Hira cKO in HSPCs, we correlated H3.3 enrichment patterns from chromatin-immunoprecipitation and sequencing (ChIP-seq) with our data from assay for transposase-accessible chromatin and sequencing (ATAC-seq). Our results demonstrate that Hira cKO HSPCs have more open chromatin and fewer H3.3 peaks, suggesting that loss of Hira-mediated H3.3 deposition increases DNA accessibility. This study identifies a novel epigenetic mechanism required for adult HSPC maintenance and elucidates a previously unappreciated regulator of normal hematopoietic homeostasis. Further understanding how Hira-mediated H3.3 regulation maintains adult HSPCs will provide greater depth to our current understanding of the epigenetic regulators essential for hematopoiesis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 134, No. 24 ( 2019-12-12), p. 2183-2194
    Abstract: There is increasing evidence that the metabolic regulation of acute myeloid leukemia (AML) cell growth interacts with epigenetic pathways of gene expression and differentiation. Jiang et al link inhibition of glucose metabolism to epigenetic changes and altered transcriptional pathways in leukemic cells and demonstrate synergy between simultaneously targeting metabolism and chromatin modifiers in suppression of AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society of Hematology ; 2019
    In:  Blood Vol. 134, No. Supplement_1 ( 2019-11-13), p. 639-639
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 639-639
    Abstract: Alterations of the epigenetic landscape and transcription are hallmarks of acute myeloid leukemia (AML) that drive leukemogenic gene expression and therefore can be exploited for therapeutic intervention. To look for such targets that harbor both an altered epigenetic feature and are genetically essential for AML cells, we performed a multi-database analysis integrating pan-cancer super enhancer landscapes with whole genome CRISPR dropout screens. Among the top targets, we discovered SEPHS2. An enhancer was present upstream of the gene marked by H3K27ac and bound by leukemogenic transcription factors including MYB, Pu.1 and RUNX1. In addition, AML cells with SEPHS2 deletion significantly dropped out in a genome wide CRISPR screen. This gene encodes a critical enzyme in the underappreciated selenoprotein synthesis pathway which was highly upregulated in TCGA AML patients compared to control blood cells from healthy individuals. Collectively, our initial bioinformatic analysis suggested that the selenoprotein synthesis pathway is a new vulnerability in AML. To test the functional requirement of the selenoprotein synthesis pathway in AML and other cells, we performed CRISPR mediated deletion of three key genes in the selenoprotein synthesis pathway, SEPHS2, SEPSECS and EEFSEC. The human AML cell lines (MOLM13, THP1 and Kasumi1), murine AML cells transformed by MLL-AF9 and human AML PDX cells all depicted a significant dependency on these genes, while proliferation of normal cord blood cells and myeloma cells (U266B1) was almost not affected. We then transplanted these cells into recipients. Deletion of SEPHS2, SEPSECS or EEFSEC significantly ameliorated AML progression, indicated by decreased AML burden and extended survival. Since selenoproteins including GPX1 and GPX4 are known antioxidants, we hypothesized that perturbing the selenoprotein synthesis pathway disrupted the redox state in AML cells. We found that deletion of SEPHS2, SEPSECS or EEFSEC elevated ROS in AML cells as demonstrated by Cell-Rox or DCF-DA staining. Western blotting revealed significantly downregulated GPX4 level and upregulated DNA damage marker γ-H2AX. Moreover, the defective proliferation was partially rescued by adding antioxidant TEMPOL. These results suggested selenoprotein synthesis pathway produced key antioxidants to balance the proper redox state and was required for AML cell proliferation. A major source of selenium is diet. Therefore, we hypothesized that consuming selenium low diet could suppress AML. We compared the survival of AML bearing mice on selenium proficient and deficient diet. The selenium deficient diet significantly extended survival, lowered GPX4 level and increased ROS in AML cells. Interestingly, normal mouse on selenium deficient diet for a 3-months period did not develop any abnormalities in CBC or bone marrow hematopoiesis. This suggests selenium deficient diet could be clinically applicable without significant side effects. Altogether, the integration of a pan-cancer enhancer landscape study with CRISPR dropout gene screen offered a powerful tool to dissect cancer targets that possessed unique enhancer features and genetic essentiality. The analysis yielded SEPHS2 and its selenoprotein synthesis pathway to be a new vulnerability in AML. The underappreciated selenoprotein synthesis pathway was key to produce antioxidant selenoproteins such as GPX1 and GPX4 to maintain a proper redox state in AML. Deleting the genes or removing selenium from diet could perturb the pathway and ameliorate the AML disease. Disclosures Lin: Syros Pharmaceuticals: Equity Ownership, Patents & Royalties.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...