GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Hepatology, Ovid Technologies (Wolters Kluwer Health)
    Abstract: Scirrhous hepatocellular carcinoma (SHCC) is one of the unique subtypes of hepatocellular carcinoma (HCC), characterized by abundant fibrous stroma in tumor microenvironment. However, it remains unclear about the molecular traits of SHCC, which is essential to develop specialized therapeutic approaches for SHCC. Approach & Results: We presented an integrative analysis containing single-cell RNA-sequencing, whole-exome sequencing, and bulk RNA-sequencing in SHCC and usual HCC samples from 134 patients, to delineate genomic features, transcriptomic profiles, and stromal immune microenvironment of SHCC. Multiplexed immunofluorescence staining, flow cytometry, and functional experiments were performed for validation. Here, we identified SHCC presented with less genomic heterogeneity while possessed a unique transcriptomic profile different from usual HCC. Insulin-like growth factor 2 ( IGF2 ) was significantly upregulated in SHCC tumor cells comparing to usual HCC, and could serve as a potential diagnostic biomarker for SHCC. Significant tumor stromal remodeling and hypoxia were observed in SHCC with enrichment of matrix cancer-associated fibroblasts and upregulation of hypoxic pathways. And IGF2 was identified as a key mediator in shaping the hypoxic stromal microenvironment of SHCC. Under this microenvironment, SHCC exhibited an immunosuppressive niche correlated to enhanced vascular-endothelial-growth-factor A signaling activity, where CD4 + T cells and CD8 + T cells were dysfunctional. Furthermore, we found another hypoxic-related molecule SPP1 from SHCC tumor cells suppressed the function of dendritic cells via SPP1-CD44 axis, which also probably hindered the activation of T cells. Conclusions: We uncovered the genomic characteristics of SHCC, and revealed a hypoxia-driven tumor stroma remodeling and immunosuppressive microenvironment in SHCC.
    Type of Medium: Online Resource
    ISSN: 0270-9139
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2023
    detail.hit.zdb_id: 1472120-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Gut, BMJ, Vol. 72, No. 6 ( 2023-06), p. 1196-1210
    Abstract: Revealing the single-cell immune ecosystems in true versus de novo hepatocellular carcinoma (HCC) recurrences could help the optimal development of immunotherapies. Design We performed 5’and VDJ single-cell RNA-sequencing on 34 samples from 20 recurrent HCC patients. Bulk RNA-sequencing, flow cytometry, multiplexed immunofluorescence, and in vitro functional analyses were performed on samples from two validation cohorts. Results Analyses of mutational profiles and evolutionary trajectories in paired primary and recurrent HCC samples using whole-exome sequencing identified de novo versus true recurrences, some of which occurred before clinical diagnosis. The tumour immune microenvironment (TIME) of truly recurrent HCCs was characterised by an increased abundance in KLRB1 + CD8 + T cells with memory phenotype and low cytotoxicity. In contrast, we found an enrichment in cytotoxic and exhausted CD8 + T cells in the TIME of de novo recurrent HCCs. Transcriptomic and interaction analyses showed elevated GDF15 expression on HCC cells in proximity to dendritic cells, which may have dampened antigen presentation and inhibited antitumour immunity in truly recurrent lesions. In contrast, myeloid cells’ cross talk with T cells-mediated T cell exhaustion and immunosuppression in the TIME of de novo recurrent HCCs. Consistent with these findings, a phase 2 trial of neoadjuvant anti-PD-1 immunotherapy showed more responses in de novo recurrent HCC patients. Conclusion True and de novo HCC recurrences occur early, have distinct TIME and may require different immunotherapy strategies. Our study provides a source for genomic diagnosis and immune profiling for guiding immunotherapy based on the type of HCC recurrence and the specific TIME.
    Type of Medium: Online Resource
    ISSN: 0017-5749 , 1468-3288
    RVK:
    Language: English
    Publisher: BMJ
    Publication Date: 2023
    detail.hit.zdb_id: 1492637-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Clinical Cancer Research, American Association for Cancer Research (AACR), Vol. 28, No. 9 ( 2022-05-01), p. 1896-1910
    Abstract: Targeted therapy and immunotherapy are transforming the treatment approach for intrahepatic cholangiocarcinoma (ICC). However, little is known about the intertumor heterogeneity (ITH) of multifocal ICC and its impacts on patient response to these treatments. We aimed to characterize the immunogenomic and epigenomic heterogeneity of multifocal ICC to guide treatment decision making. Experimental Design: We obtained 66 tumor samples from 16 patients with multifocal ICC and characterized the tumor and immune heterogeneity using whole-exome sequencing, bulk and single-cell RNA sequencing, methylation microarray, and multiplex immunostaining. Patients were divided into high- or low-ITH groups according to the median ITH index. Two independent cohorts were used to validate findings. Responses to anti-PD-1 therapy were assessed. Results: Multifocal ICC presented considerable intertumor genomic, transcriptional, and epigenomic heterogeneity within a patient in high ITH group. The immune profile among multiple tumors within a patient was relatively less heterogeneous in high- or low-ITH group, and consistent responses of multiple tumors to anti-PD-1 immunotherapy were observed. Unsupervised clustering of immune markers identified one low and one high immune subtype, with higher immune cell infiltration, closer tumor–immune cell interactions, and upregulated IFN-signature expression in high-immune subtype. Determining expression levels of CD8B and ICOS facilitated this immune classification and prediction of patient prognosis. Finally, promoter DNA methylation contributed to different immune profiles of two subtypes by regulating immune-gene expression. Conclusions: There is comprehensive heterogeneity in the genome, transcriptome, and epigenome of multifocal ICC. On the basis of the less heterogeneous immune profile of ICC, we suggest an immune classification that stratifies patients' prognosis and may support personalized immunotherapy.
    Type of Medium: Online Resource
    ISSN: 1078-0432 , 1557-3265
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2022
    detail.hit.zdb_id: 1225457-5
    detail.hit.zdb_id: 2036787-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...