GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Shats, Igor  (2)
  • Medicine  (2)
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 66, No. 22 ( 2006-11-15), p. 10750-10759
    Abstract: Mutations in p53 are ubiquitous in human tumors. Some p53 mutations not only result in loss of wild-type (WT) activity but also grant additional functions, termed “gain of function.” In this study, we explore how the status of p53 affects the immediate response gene activating transcription factor 3 (ATF3) in the 12-O-tetradecanoylphorbol-13-acetate (TPA)-protein kinase C (PKC) pathway. We show that high doses of TPA induce ATF3 in a WT p53-independent manner correlating with PKCs depletion and cell death. We show that cells harboring mutant p53 have attenuated ATF3 induction and are less sensitive to TPA-induced death compared with their p53-null counterparts. Mutagenesis analysis of the ATF3 promoter identified the regulatory motifs cyclic AMP-responsive element binding protein/ATF and MEF2 as being responsible for the TPA-induced activation of ATF3. Moreover, we show that mutant p53 attenuates ATF3 expression by two complementary mechanisms. It interacts with the ATF3 promoter and influences its activity via the MEF2 site, and additionally, it attenuates transcriptional expression of the ATF3 activator MEF2D. These data provide important insights into the molecular mechanisms that underlie mutant p53 gain of function. (Cancer Res 2006; 66(22): 1750-9)
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2006
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 65, No. 11 ( 2005-06-01), p. 4530-4543
    Abstract: The difficulty to dissect a complex phenotype of established malignant cells to several critical transcriptional programs greatly impends our understanding of the malignant transformation. The genetic elements required to transform some primary human cells to a tumorigenic state were described in several recent studies. We took the advantage of the global genomic profiling approach and tried to go one step further in the dissection of the transformation network. We sought to identify the genetic signatures and key target genes, which underlie the genetic alterations in p53, Ras, INK4A locus, and telomerase, introduced in a stepwise manner into primary human fibroblasts. Here, we show that these are the minimally required genetic alterations for sarcomagenesis in vivo. A genome-wide expression profiling identified distinct genetic signatures corresponding to the genetic alterations listed above. Most importantly, unique transformation hallmarks, such as differentiation block, aberrant mitotic progression, increased angiogenesis, and invasiveness, were identified and coupled with genetic signatures assigned for the genetic alterations in the p53, INK4A locus, and H-Ras, respectively. Furthermore, a transcriptional program that defines the cellular response to p53 inactivation was an excellent predictor of metastasis development and bad prognosis in breast cancer patients. Deciphering these transformation fingerprints, which are affected by the most common oncogenic mutations, provides considerable insight into regulatory circuits controlling malignant transformation and will hopefully open new avenues for rational therapeutic decisions.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2005
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...