GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 15 ( 2015), p. 153601-
    Abstract: Alloy nanoparticles exhibit multifunctional properties different from monometallic nanoparticles. Especially, when a third metal is introduced into bimetallic nanoparticles system to form trimetallic nanoparticles, their chemical activities will be further improved. As the catalytic reaction of nanoparticles usually takes place on surfaces, and the activity and stability are closely related to their structures, therefore the research on the stable structure is crucial for understanding their catalytic activities. In addition, the electrochemically synthesized tetrahexahedral nanoparticles bound with highindex facets may exhibit greatly enhanced catalytic activity because of their large density of low coordination sites at the surface. Based on the above reasons, this paper carries out the investigation on the stable structures of tetrahexahedral Au-Cu-Pt trimetallic nanoparticles by using an improved genetic algorithm and the quantum-corrected Sutton-Chen (Q-SC) type many-body potentials. To avoid the genetic algorithm being trapped into premature convergence, two improvement strategies are developed. On the one hand, an atom coordinate ranking operation, which is implemented according to the atomic distance from the core, is proposed for reducing the probability of individual loss. On the other hand, an alternating bit means is introduced into the crossover operation to keep the atomic composition ratio unchanged. Moreover, the performance of genetic algorithm and the influence of original configuration on the stable structures of Au- Cu-Pt trimetallic nanoparticles with different sizes and different compositions also have been investigated. One stochastic distribution structure and three core-shell distribution structures of Au@CuPt, Cu@AuPt and Pt@AuCu are adopted as the initial structures, respectively. Eleven optimization trials on Au-Cu-Pt trimetallic nanoparticles in Au-Cu-Pt system with Au : Cu : Pt of 0:343 : 0:343 : 0:314 with 443 atoms are used to verify that the different original structures should have no effect on the final stable structure. Furthermore, 30 random trails on Au-Cu-Pt trimetallic nanoparticles at Au : Cu : Pt of 0:316 : 0:316 : 0:368 with 443 atoms are conducted to prove that the genetic algorithm can obtain robust results with small standard deviation. Finally, the segregation analysis results show that: In Au-Cu-Pt trimetallic nanoparticles, Au and Cu atoms prefer to aggregate on the surface while Pt atoms are preferential to locate in the core. Furthermore, Cu atoms exhibit stronger surface segregation than Au atoms. For small Au or Cu concentration, Au and Cu atoms would display the maximum segregation. They begin to compete during aggregation, and the Cu atoms have a strong tendency for surface segregation when the number of Au and Cu atoms is bigger than the total number of surface atoms. With increasing number of Au and Cu atoms over those on the surface and sub-surface, Au atoms would display a strong surface segregation than Cu atoms. Additionally, Cu atoms will mix with Pt atoms in the inner layers over the sub-surface after occupying the surface. The distribution of surface atoms has been further examined by the analyses of coordination number: the Cu atoms tend to occupy the vertices, edges and kinks, while the Au atoms preferentially segregate to the flattened surface. This study provides a perspective on structural features and segregation behavior of trimetallic nanoparticles.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 62, No. 19 ( 2013), p. 193601-
    Abstract: Pt-Pd alloy nanoparticles exhibit better catalytic activity and selectivity than pure Pt and Pd ones, and thus to explore their stable structures is crucial for understanding the catalytic performance of nanoparticles. In this paper, the particle swarm optimization algorithm and the quantum Sutton-Chen potentials are employed to investigate the stable structures of tetrahexahedral Pt-Pd alloy nanoparticles with different sizes and different composition. Results show that in Pt-Pd alloy nanoparticles, Pt atoms are preferential to locate of the core and Pd atoms to occupy the surface. Furthermore, the more symmetrical and ordered the structure, the lower the energy of the structure. The Warren-Cowley chemical short-range order parameters of three different sizes of nanoparticles increase accordingly with rising fraction Pt. The segregation degree of small sized nanoparticle is more remarkable than large sized one for the same content of Pt.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2013
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 64, No. 1 ( 2015), p. 013602-
    Abstract: Based on the Monte Carlo simulation method, this paper employs the tight-binding potentials and the quantum-corrected Sutton-Chen type many-body potentials to investigate the stable structure, the distribution of surface atoms, the core-shell distribution, and the chemical short-range order parameter of tetrahexahedral Au-Pd nanoparticles. Different sizes and different Au contents are considered. Our results show that the surface atom distribution exhibits the same trend for the two types of potentials, that is, Au atoms tend to segregate on the surface while Pd atoms prefer to occupy the inner sites, this is beneficial to lowering the total energy of the structure. Nanoparticles are always present in a core-shell structure for small Au content. With increasing Au content, the Au-Pd nanoparticles will tend to form an onion-like multi-shell structure for the tight-binding potentials. The degree of the segregation of Au-Pd nanoparticles at the quantum-corrected Sutton-Chen type potentials is higher than that for the tight-binding potentials.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2015
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Acta Physica Sinica, Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences, Vol. 66, No. 5 ( 2017), p. 053601-
    Abstract: Alloy nanoclusters have received extensive attention because they can achieve bifunctional properties by making good use of the cooperative effect of two metals. In this paper, an improved Basin-Hopping Monte Carlo (BHMC) algorithm is proposed to investigate the structural stabilities of Fe-Pt alloy nanoclusters. Different cluster sizes and chemical compositions are considered. Moreover, a similarity function is introduced to analyze the structural similarity between the stable structures of alloy clusters and those of their monometallic clusters. Meanwhile, the atomic distributions of Fe-Pt alloy clusters are considered for their stable structures. The results indicate that for Fe-Pt alloy clusters with the size N 24, there is no significant structural evolution with the increase of cluster size. Fe atoms prefer to segregate at the peripheral positions of the clusters, while Pt atoms tend to occupy the interior. The same distribution result can be obtained for the structures of clusters with different compositions. With Fe composition increasing, this distribution trend is more pronounced for the Fe-Pt alloy clusters. In addition, by calculating the structural similarity function between alloy and monometallic clusters, we find that the stable structures of Fe-Pt alloy clusters gradually vary with composition ratio. Moreover, when the Fe atoms or Pt atoms are added into the Fe-Pt alloy system, they change the stable structures of Fe-Pt alloy clusters, resulting in a different structure from Fe and Pt monometallic ones. Also, the structural similarity is different when the Fe composition varies. Furthermore, the best stable structures of Fe-Pt clusters with different compositions and sizes are obtained by calculating the second-order finite difference in energy of Fe-Pt alloy clusters.
    Type of Medium: Online Resource
    ISSN: 1000-3290 , 1000-3290
    Language: Unknown
    Publisher: Acta Physica Sinica, Chinese Physical Society and Institute of Physics, Chinese Academy of Sciences
    Publication Date: 2017
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...