GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • AIP Publishing  (4)
  • Shao, G.  (4)
Material
Publisher
  • AIP Publishing  (4)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    AIP Publishing ; 1999
    In:  Applied Physics Letters Vol. 75, No. 9 ( 1999-08-30), p. 1282-1283
    In: Applied Physics Letters, AIP Publishing, Vol. 75, No. 9 ( 1999-08-30), p. 1282-1283
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 1999
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    AIP Publishing ; 2005
    In:  Applied Physics Letters Vol. 87, No. 20 ( 2005-11-14)
    In: Applied Physics Letters, AIP Publishing, Vol. 87, No. 20 ( 2005-11-14)
    Abstract: The role of boron-induced dislocation loops on the suppression of the luminescence thermal quenching in silicon-based light-emitting diodes is investigated here. Luminescence measurements and cross-sectional transmission-electron-microscopy images from devices fabricated by boron implantation into crystalline silicon, and into a pre-amorphized substrate, to prevent the boron-induced loops formation, were compared. The results show that, in the devices incorporating dislocation loops between the depletion region and sample surface (the boron induced loops), the thermal quenching has been completely eliminated, in contrast with devices fabricated from the pre-amorphized substrate where strong thermal quenching is still observed.
    Type of Medium: Online Resource
    ISSN: 0003-6951 , 1077-3118
    RVK:
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2005
    detail.hit.zdb_id: 211245-0
    detail.hit.zdb_id: 1469436-0
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Applied Physics, AIP Publishing, Vol. 98, No. 12 ( 2005-12-15)
    Abstract: A study of the stability of amorphous FeSi2 films and their transition to a crystalline phase as a function of deposition or annealing temperature is presented. Stoichiometric FeSi2 films, 300–400nm thick, were deposited on (100) Si substrates by co-sputtering of Fe and Si. It was found that the films grow in an amorphous form for the substrate temperature ranging from room temperature to 200°C, while from 300–700°C, they grow in form of a crystalline β-FeSi2 phase. In a postdeposition 30min heat treatments, the layers retain the amorphous structure up to 400°C, transforming to the crystalline β phase at 500–700°C. The results are discussed in the frame of the existing models, and compared to those found in the literature. It is shown that in as-deposited films, the growth is controlled by surface diffusion, the crystalline layers growing in a columnar structure strongly correlated to the Si substrate. Postdeposition treatments induce a random crystallization controlled by bulk diffusion, the resulting structure not being influenced by the substrate. The results of this work contribute to a better understanding of the processes involved in a transition of amorphous FeSi2 films to a crystalline phase, and provide a basis to determine the processing parameters in potential applications of this promising semiconducting material.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2005
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    AIP Publishing ; 2005
    In:  Journal of Applied Physics Vol. 97, No. 7 ( 2005-04-01)
    In: Journal of Applied Physics, AIP Publishing, Vol. 97, No. 7 ( 2005-04-01)
    Abstract: We have studied the role of boron ion energy in the engineering of dislocation loops for silicon light-emitting diodes (LEDs). Boron ions from 10to80keV were implanted in (100) Si at ambient temperature, to a constant fluence of 1×1015ions∕cm2. After irradiation the samples were annealed for 20min at 950°C by rapid thermal annealing. The samples were analyzed by transmission electron microscopy and Rutherford backscattering spectroscopy. It was found that the applied ion implantation∕thermal processing induces interstitial perfect and faulted dislocation loops in {111} habit planes, with Burgers vectors a∕2⟨110⟩ and a∕3⟨111⟩, respectively. The loops are located around the projected ion range, but stretch in depth approximately to the end of range. Their size and distribution depend strongly on the applied ion energy. In the 10keV boron-implanted samples the loops are shallow, with a mean size of ∼30nm for faulted loops and ∼75nm for perfect loops. Higher energies yield buried, large, and irregularly shaped perfect loops, up to ∼500nm, coexisting with much smaller faulted loops. In the latter case much more Si interstitials are bounded by the loops, which are assigned to a higher supersaturation of interstitials in as-implanted samples, due to separated Frenkel pairs. An interesting phenomenon was found: the perfect loops achieved a steady-state maximum size when the ion energy reached 40keV. Further increase of the ion energy only increased the number of these large loops and made them bury deeper in the substrate. The results of this work contribute to laying a solid ground in controlling the size and distribution of dislocation loops in the fabrication of silicon LEDs.
    Type of Medium: Online Resource
    ISSN: 0021-8979 , 1089-7550
    Language: English
    Publisher: AIP Publishing
    Publication Date: 2005
    detail.hit.zdb_id: 220641-9
    detail.hit.zdb_id: 3112-4
    detail.hit.zdb_id: 1476463-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...