GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: European Journal of Haematology, Wiley, Vol. 98, No. 5 ( 2017-05), p. 501-507
    Abstract: The efficacy of mogamulizumab in adult T‐cell leukemia/lymphoma ( ATLL ) was reported in a previous phase 2 study. Compared with patients in clinical trials, however, most patients in real‐life settings have demonstrated worse outcomes. Method We retrospectively analyzed 96 patients with relapsed/refractory ATLL who received mogamulizumab treatment. Results Relapsed/refractory ATLL patients with a median age of 70 years received a median of five courses of mogamulizumab. Hematologic toxicity and skin rash were the most common adverse events, and both were manageable. Of 96 patients, 87 were evaluable for efficacy. The overall response rate was 36%, and the median progression‐free survival ( PFS ) and overall survival ( OS ) from the start of mogamulizumab therapy were 1.8 and 4.0 months, respectively. Of the original 96 patients, only 25 fulfilled the inclusion criteria of the phase 2 study. Those who met the criteria demonstrated longer median PFS and OS durations of 2.7 and 8.5 months, respectively. The median OS from diagnosis in relapsed/refractory ATLL patients receiving mogamulizumab was 12 months, longer than the 5.8 months in a historical cohort without mogamulizumab. Conclusion In clinical practice, mogamulizumab exhibited antitumor activity in patients with relapsed/refractory ATLL , with an acceptable toxicity profile. Mogamulizumab therapy improved the OS of ATLL patients.
    Type of Medium: Online Resource
    ISSN: 0902-4441 , 1600-0609
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2017
    detail.hit.zdb_id: 2027114-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Japanese Society for Lymphoreticular Tissue Research ; 2015
    In:  Journal of Clinical and Experimental Hematopathology Vol. 55, No. 3 ( 2015), p. 145-149
    In: Journal of Clinical and Experimental Hematopathology, Japanese Society for Lymphoreticular Tissue Research, Vol. 55, No. 3 ( 2015), p. 145-149
    Type of Medium: Online Resource
    ISSN: 1346-4280 , 1880-9952
    Language: English
    Publisher: Japanese Society for Lymphoreticular Tissue Research
    Publication Date: 2015
    detail.hit.zdb_id: 2395568-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Japanese Society for Lymphoreticular Tissue Research ; 2017
    In:  Journal of Clinical and Experimental Hematopathology Vol. 56, No. 3 ( 2017), p. 145-149
    In: Journal of Clinical and Experimental Hematopathology, Japanese Society for Lymphoreticular Tissue Research, Vol. 56, No. 3 ( 2017), p. 145-149
    Type of Medium: Online Resource
    ISSN: 1346-4280 , 1880-9952
    Language: English
    Publisher: Japanese Society for Lymphoreticular Tissue Research
    Publication Date: 2017
    detail.hit.zdb_id: 2395568-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 35, No. 2 ( 2021-02), p. 454-467
    Abstract: Primary myelofibrosis (PMF) is a myeloproliferative neoplasm (MPN) characterized by clonal myeloproliferation, progressive bone marrow (BM) fibrosis, splenomegaly, and anemia. BM fibrosis was previously thought to be a reactive phenomenon induced by mesenchymal stromal cells that are stimulated by the overproduction of cytokines such as transforming growth factor (TGF)-β1. However, the involvement of neoplastic fibrocytes in BM fibrosis was recently reported. In this study, we showed that the vast majority of collagen- and fibronectin-producing cells in the BM and spleens of Jak2V617F-induced myelofibrosis (MF) mice were fibrocytes derived from neoplastic hematopoietic cells. Neoplastic monocyte depletion eliminated collagen- and fibronectin-producing fibrocytes in BM and spleen, and ameliorated most characteristic MF features in Jak2V617F transgenic mice, including BM fibrosis, anemia, and splenomegaly, while had little effect on the elevated numbers of megakaryocytes and stem cells in BM, and leukothrombocytosis in peripheral blood. TGF-β1, which was produced by hematopoietic cells including fibrocytes, promoted the differentiation of neoplastic monocytes to fibrocytes, and elevated plasma TGF-β1 levels were normalized by monocyte depletion. Collectively, our data suggest that neoplastic fibrocytes are the major contributor to BM fibrosis in PMF, and TGF-β1 is required for their differentiation.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2021
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 162-162
    Abstract: In primary myelofibrosis patients, somatic mutations such as JAK2V617F(JAKVF) and MPLW515 that activate JAK-STAT signaling are often seen. Small-molecule JAK2 inhibitors are effective for organomegaly and constitutional symptoms, but the drugs have little effect on BM fibrosis. To clarify the mechanism by which MPN cells with JAK2 mutations cause BM fibrosis, we compared the gene expression patterns of Lin−Sca1+ BM cells in JAK2VF transgenic mice (JAK2VF-TG), which develop myelofibrosis (MF), with that in WT mice. We found that TGFb1 and HOXB4, the target genes of transcription factor USF1 were highly expressed. TGFβ1, which is secreted by hematopoietic cells, is essential for fibrotic development in a murine model of MF (Chagraoui et al. Blood 2002), and increased expression of HOXB4 enhances human megakaryocytic development (Zhong et al. BBRC 2010). To investigate the mechanism of the high expression of these genes downstream of JAK2 signaling, USF1 and a cytokine receptor gene (MPL, EPOR or CSF3R) were co-transfected into 293T cells along with either a TGF-β1/HOXB4 promoter-driven or a STAT5 response element-driven luciferase reporter. Stimulation of MPL with TPO enhanced USF1 transcriptional activity about 3 fold, but stimulation of EPOR with EPO or of CSF3R with G-CSF did not change this activity. However, stimulation with any of the 3 types of cytokines enhanced STAT5 transcriptional activity. JAK2VF upregulated USF1 and STAT5 much more highly than JAK2WT without TPO stimulation. This USF1 upregulation specifically to TPO/MPL signaling was suppressed by a dominant negative mutant of USF1, JAK2 inhibitors (AG490, NS-018) or MEK inhibitors (U0126, PD325901). Inhibition of PI3K or p38MAPK did not affect the USF1 activation. Co-treatment with JAK2 and MEK inhibitors showed a synergistic effect in blocking both USF1 upregulation and STAT5 activation induced by JAK2VF. Next, we tested the MEK inhibitor, PD325901, in combination with the JAK2 inhibitor, NS-018, in the JAK2VF-TG mice. After disease was established 12 weeks after birth, JAK2VF-TG mice were divided into the following 4 groups: vehicle control; PD325901 monotherapy; NS-018 monotherapy; and combined therapy. PD325901 (5 mg/kg) and NS-018 (50 mg/kg) were orally administered once and twice daily, respectively. After 12 weeks of treatment, we evaluated the effect on BM fibrosis. The grading of MF in each group (n = 5-6) was as follows: vehicle control (MF-0: 0/6, MF-1 or 2: 6/6); PD325901 monotherapy (MF-0: 4/5, MF-1 or 2: 1/5); NS-018 monotherapy (MF-0: 0/6, MF-1 or 2: 6/6); and combined therapy (MF-0: 3/6, MF-1 or 2: 3/6). In the 2 groups treated with PD325901, 50~80% of mice showed MF-0. In contrast, in vehicle-treated or NS-018 monotherapy groups, all mice showed MF-1 or 2. Consistent with the MF grading, BM cellularity was significantly increased in the PD325901 monotherapy or combined therapy groups compared with the vehicle-treated group. A significant reduction was seen in the plasma TGFβ1 concentration in the PD325901 monotherapy and combined therapy groups compared with the vehicle-treated group (9.7 ng/ml, 8.1 ng/ml vs. 18.2 ng/ml, respectively). The TGFβ1 concentration in the extracellular fluid of BM (Wagner et al blood 2007) was also significantly reduced (5.6 ng/ml, 6.8 ng/ml vs. 9.1 ng/ml, respectively). BM cellularity and the TGFβ1 concentration in the NS-018 monotherapy group were comparable to those in the vehicle-treated group. Interestingly, megakaryocytes in the PD325901 monotherapy and combined therapy groups were decreased in number and were smaller than those in the vehicle-treated or NS-018 monotherapy groups. Regarding the effect on splenomegaly, spleen weight was significantly reduced in the NS-018 monotherapy and combined therapy groups compared with the vehicle-treated group (0.83 g, 0.69 g vs. 1.18 g, respectively). PD325901 monotherapy had little effect on splenomegaly. It is known that MEK-ERK1/2 pathway is critical in normal megakaryocyte development. In vitro data suggest that JAK2VF activates this pathway downstream of MPL and may contribute to TGFβ1 overproduction and dysmegakaryopoiesis, causing BM fibrosis via transcriptional enhancement of USF1. In vivo data suggest that MEK inhibition has the potential to improve dysmegakaryopoiesis and BM fibrosis. The combined therapy of JAK2 inhibitors with MEK inhibitors might be a promising therapy for improving both splenomegaly and BM fibrosis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Society of Hematology ; 2013
    In:  Blood Vol. 122, No. 21 ( 2013-11-15), p. 478-478
    In: Blood, American Society of Hematology, Vol. 122, No. 21 ( 2013-11-15), p. 478-478
    Abstract: JAK2V617F (JAK2VF) is the most frequent mutation in myeloproliferative neoplasms (MPN), and its role has been demonstrated in mouse models. Actually, JAK2VF transgenic (JAK2VF Tg) mice generated by us induce lethal MPN (Shide et al. Leukemia 2008). Recently, mutations of epigenetic regulator such as TET2 are also frequently identified in MPN, and several TET2 knock out or knock down (TET2KD) mouse models are generated. We previously analyzed TET2KD mice (Ayu17-449) (Shide et al. Leukemia 2012). TET2KD fetal liver (FL) or bone marrow (BM) cells showed a growth advantage over Wt BM cells, with increased self-renewal capacity of hematopoietic stem cells; however TET2KD mice didn’t develop MPN, and its role in MPN remained unclear. To explore the role of TET2 deficiency in MPN harboring JAK2VF, we examined the cooperative effect, using these mutant mice. Materials and methods (1) Mice and collection of test cells. JAK2VF Tg mice (C57BL/6, Ly5.2) and TET2KD mice (Ayu17-449, C57BL/6, Ly5.2) were used. We crossed them, and collected JAK2Wt-TET2Wt (Wt-Wt), JAK2Wt-TET2KD (Wt-KD), JAK2VF-TET2Wt (VF-Wt), and JAK2VF-TET2KD (VF-KD) FL cells. (2) Non-competitive repopulation assay (NCRA). FL cells (Ly5.2, 1x106 cells) were transplanted into lethally irradiated recipients (Ly5.1) without competitor cells. Recipients were analyzed by complete blood counts, flow cytometry, colony-forming assay, colony-replating assay, pathology at 20-28 weeks post-transplantation, and overall survival. (3) Competitive repopulation assay (CRA) and serial BM transplantation (sBMT). FL cells (Ly5.2, 1x106 cells) were transplanted into lethally irradiated recipients (Ly5.1) with competitor Wt BM cells (Ly5.1, 5x106 cells), and sBMT was performed by 1x106 BM cells of the recipients at every 12 weeks post-transplantation. Recipients which were not selected as the donors were analyzed. (4) Analyses of adult mutant mice. Mice were bred in BDF1 background and analyzed at 20 or more weeks of age, as well as the recipients in NCRA. (5) Statistical analysis. Results were presented as means±S.D. Two-tailed Student’s t-test and log-rank test were used. Result In NCRA, both recipients transplanted with VF-Wt cells and VF-KD cells developed MPN with increase in WBC and Plt, decrease in Hb, fibrosis in BM and spleen, and extramedullary hematopoiesis (EMH) of lung and liver; and the latter developed more severe MPN and died earlier: VF-Wt (n=10) vs. VF-KD (n=10); WBC (x104/µl), 4.2±1.6 vs. 7.3±3.3 (p 〈 0.05); peripheral blood (PB) myeloid cells (%), 59.6±9.7 vs. 71.9±8.2 (p 〈 0.05); liver weight (g), 1.15±0.22 vs. 1.48±0.22 (p 〈 0.01); spleen weight (g), 0.26±0.11 vs. 0.52±0.19 (p 〈 0.01): VF-Wt (n=36) vs. VF-KD (n=30); mean survival time (weeks), 36 vs. 39 (p 〈 0.05). In colony-forming assay, number of CFU-GM was more increased in VF-KD cells than VF-Wt cells: VF-Wt (n=9) vs. VF-KD (n=9); colonies/2x104 BM cells, 107±37 vs. 157±46 (p 〈 0.05). In colony-replating assay, VF-Wt BM cells lost replating capacity by 3rd to 5th passage; VF-KD BM cells retained replating capacity beyond 5th passage: VF-Wt (n=9) vs. VF-KD (n=6); number of colonies in 4th passage, 5.9±6.8 vs. 896±613 (p 〈 0.01). In CRA, all recipients transplanted with VF-Wt cells (n=9) or VF-KD cells (n=9) showed ≥ 70% test cell-derived PB chimerism, and developed MPN with fibrosis and EMH at 12 weeks. In 2nd BMT, 4/9 recipients transplanted with VF-Wt cells showed ≥ 35% PB chimerism at 12 weeks. Six recipients were analyzed at 12-16weeks, and no one (0/6) showed pathological findings of MPN. Whereas, 7/9 recipients transplanted with VF-KD cells showed ≥ 35% PB chimerism. Five recipients were analyzed, and 3/5 developed MPN with fibrosis and EMH: VF-Wt (n=6) vs. VF-KD (n=5); liver weight (g), 1.00±0.12 vs. 1.39±0.15 (p 〈 0.002); spleen weight (g), 0.069±0.019 vs. 0.20±0.097 (p 〈 0.05). In analyses of adult mutant mice, both VF-Wt mice and VF-KD mice developed MPN, and disease severities or colony-replating capacities are similar tendencies as those in transplantation model. Conclusion TET2 deficiency increases severity of MPN harboring JAK2VF. TET2 deficiency enhances disease initiating potential of JAK2VF-MPN stem cells. TET2 deficiency is considered to be critical for both onset and progression of MPN harboring JAK2V617F. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2013
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 134, No. Supplement_1 ( 2019-11-13), p. 310-310
    Abstract: Myelofibrosis (MF) associated with myeloproliferative neoplasms (MPN) has been considered to be a reactive phenomenon caused by mesenchymal stromal cells (MSCs) stimulated by cytokines such as TGFb-1 overproduced by neoplastic megakaryocytes (MKs) and platelets. TGFb-1 stimulates non-neoplastic mesenchymal cells to produce collagen and fibronectin and to induces bone marrow (BM) fibrosis. However, the involvement of neoplastic fibrocyte in MF has recently been reported (Verstovsek et al. JEM 2016), and among blood cells, monocytes in particular are considered to be the main source of neoplastic fibrocytes. In this study, we assesed the role of neoplastic fibrocytes using a mouse model of MPN induced by Jak2V617F (Shide et al. Leukemia 2008). First, the distribution of neoplastic fibrocyte in the BM of Jak2V617F transgenic (TG) mice was examined. We transplanted wild-type (WT) or Jak2V617F TG cells (B6-CD45.2), together with WT BM cells (B6-CD45.1) into irradiated WT recipient mice (B6-CD45.1). Only recipient mice transplanted with a mixture of Jak2V617F cells and WT cells developed BM fibrosis. In immunofluorescent staining of fibrotic BM, cells expressing the fibrocyte marker CD45/Collagen-1(Col-1) were observed much more than cells expressing the fibroblast marker CD90(usually positive for MSCs)/Col-1. As for CD45/Col-1 positive cells, cells expressing CD45.2/Col-1 were much more than cells expressing CD45.1/Col-1, clearly indicating that these cells were derived from Jak2V617F mutant blood cells. On the other hand, in the BM of recipient mice transplanted with control WT cells, few cells expressing CD45/Col-1 or CD90/Col-1 were present. To examine the differentiation ability of Jak2V617F blood cells to fibrocytes directly, peripheral blood (PB) mononuclear cells (MNC) of Jak2V617F mice or WT mice were cultured in vitro. After 5 days of culture, PB MNCs from Jak2V617F mice differentiated into mature fibrocytes exhibiting a long spindle shape with Col-1 expression. On the other hand, there were very few fibrocytes differentiated from PB MNC from WT mice. Next, we depleted monocytes, the main source of fibrocytes, and observed its effects on BM fibrosis in vivo. Jak2V617F TG mice were mated with CD11b-diphtheria toxin receptor (DTR) TG mice (Duffield et al. JCI 2005) to obtain Jak2V617F/CD11b-DTR double TG mice. Mice transplanted with BM cells from Jak2V617F/CD11b-DTR double TG mice (hereinafter called Jak2V617F/CD11b-DTR mice) exhibit leukocytosis, thrombocytosis, anemia, splenomegaly, and BM fibrosis with increased megakaryocytes. Jak2V617F/CD11b-DTR mice was administered diphtheria toxin (DT) intraperitoneally to deplete monocytes. One day after DT administration, the number of PB monocytes (CD11b+/F4/80+) drastically decreased in Jak2V617F/CD11b-DTR mice, and the reduction of monocyte was maintained by every-other-day DT administration. After 8 weeks DT treatment, mice were sacrificed and analyzed. As a control group, Jak2V617F/CD11b-DTR mice treated with PBS were examined. DT treatment drastically decreased the number of neoplastic fibrocytes expressing CD45.2/Col-1 in BM and spleen of Jak2V617F/CD11b-DTR mice compared with control mice treated with PBS. Consistently, reticulin fibers were eliminated almost completely and collagen fibers almost fully disappeared in BM, which led to a reversal of the decrease in BM cellularity, although the number of MKs was not affected. Similar findings were observed in the spleen, although not completely. Plasma TGF-b1 level were about 2-fold higher in Jak2V617F/CD11b-DTR mice than in WT mice. Neoplastic monocyte depletion significantly decreased TGF-b1 level. Since MK numbers did not change, this indicates that fibrocytes are one of the main sources of TGF-b1. In other features of MF in Jak2V617F/CD11b-DTR mice, splenomegaly was ameliorated by DT treatment. Microscopic analysis revealed an improvement in the damaged spleen architecture and the disappearance of splenic fibrosis. In summary, most collagen-producing cells in BM were neoplastic fibrocytes in Jak2V617F-induced MPN, indicating that neoplastic fibrocytes played an essential role and mesenchymal fibroblasts had a minor contribution in fibrosis in MPN. Depletion of neoplastic monocytes also improved splenomegaly as well as BM fibrosis in mice, and this cell fraction could be a promising therapeutic target. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2019
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: International Journal of Hematology, Springer Science and Business Media LLC, Vol. 96, No. 3 ( 2012-9), p. 342-349
    Type of Medium: Online Resource
    ISSN: 0925-5710 , 1865-3774
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2012
    detail.hit.zdb_id: 2028991-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: International Journal of Hematology, Springer Science and Business Media LLC, Vol. 108, No. 4 ( 2018-10), p. 411-415
    Type of Medium: Online Resource
    ISSN: 0925-5710 , 1865-3774
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2028991-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Viruses, MDPI AG, Vol. 14, No. 4 ( 2022-03-29), p. 710-
    Abstract: A retrospective chart survey of the clinical features of indolent adult T-cell leukemia/lymphoma (ATL) was conducted in the Miyazaki Prefecture, Japan. This study enrolled 24 smoldering-type ATLs, 10 favorable chronic-type ATLs, and 20 unfavorable chronic-type ATLs diagnosed between 2010 and 2018. Among them, 4, 3, and 10 progressed to acute-type ATLs during their clinical course. The median survival time (MST) in smoldering-type ATL and favorable chronic-type ATL was not reached, and their 4-year overall survival (OS) was 73% and 79%, respectively. Compared with this, the prognosis of unfavorable chronic-type ATL was poor. Its MST was 3.32 years, and the 4-year OS was 46% (p = 0.0095). In addition to the three features that determine the unfavorable characteristics of chronic-type ATL, namely, increased lactate dehydrogenase, increased blood urea nitrogen, and decreased albumin, the high-risk category by the indolent ATL-Prognostic Index, which was defined by an increment of soluble interleukin-2 receptor (sIL2-R) of 〉 6000 U/mL, could explain the poor prognosis in indolent ATL patients. The level of sIL-2R might be an indicator of the initiation of therapy for indolent ATL.
    Type of Medium: Online Resource
    ISSN: 1999-4915
    Language: English
    Publisher: MDPI AG
    Publication Date: 2022
    detail.hit.zdb_id: 2516098-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...