GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cell, Elsevier BV, Vol. 156, No. 3 ( 2014-01), p. 590-602
    Type of Medium: Online Resource
    ISSN: 0092-8674
    RVK:
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2014
    detail.hit.zdb_id: 187009-9
    detail.hit.zdb_id: 2001951-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: International Journal of Cancer, Wiley, Vol. 128, No. 10 ( 2011-05-15), p. 2495-2500
    Abstract: Inappropriate nuclear factor (NF) κB activity is one major hallmark of B‐cell malignancies and chronic lymphocytic leukemia (CLL). NFκB‐dependent genes are involved in antiapoptosis, cell proliferation and metastasis and are responsible for survival and proliferation of tumors. However, the mechanisms of NFκB activity in CLL still need to be elucidated. Previously, we identified translocations in a region on chromosome 6q that encodes tumor necrosis factor alpha‐induced protein 3, which is a key player in negative feedback loop regulation of NFκB. Inactivation of this ubiquitin‐editing enzyme is involved in immunopathologies and in tumorigenesis. Frequent mutations in the A20 locus—leading to sustained NFκB activity—could be shown to play a dominant role in development of different B‐cell malignancies. To check if A20 is involved in upregulation of NFκB activity in CLL, we sequenced Exons 2–9 of the A20 gene in 55 CLL DNA samples. Furthermore, we determined the methylation status of the promoter region in 63 CLL DNA samples and compared to 10 control DNAs of B cells from healthy donors. Contrary to reports from other B‐cell malignancies, the A20 region showed neither mutations nor aberrant DNA methylation. Moreover, its expression could be confirmed by immunoblotting and showing comparable results to healthy B cells. These results indicate that malignant development in CLL differs from most of other B‐cell malignancies, which show frequent inactivation of A20.
    Type of Medium: Online Resource
    ISSN: 0020-7136 , 1097-0215
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2011
    detail.hit.zdb_id: 218257-9
    detail.hit.zdb_id: 1474822-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 120, No. 19 ( 2012-11-08), p. 3978-3985
    Abstract: Survival of chronic lymphocytic leukemia (CLL) cells is triggered by several stimuli, such as the B-cell receptor (BCR), CD40 ligand (CD40L), or interleukin-4 (IL-4). We identified that these stimuli regulate apoptosis resistance by modulating sphingolipid metabolism. Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of proapoptotic ceramide in BCR/IL-4/CD40L–stimulated primary CLL cells compared with untreated controls. Antiapoptotic glucosylceramide levels were significantly increased after BCR cross-linking. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via UDP-glucose ceramide glucosyltransferase (UGCG). Besides specific UGCG inhibitors, our data demonstrate that IgM-mediated UGCG expression was inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which reverted IgM-induced resistance toward apoptosis of CLL cells. Sphingolipids were recently shown to be crucial for mediation of apoptosis via mitochondria. Our data reveal ABT-737, a mitochondria-targeting drug, as interesting candidate partner for PI3Kδ and BTK inhibition, resulting in synergistic apoptosis, even under protection by the BCR. In summary, we identified the mode of action of novel kinase inhibitors CAL-101 and PCI-32765 by controlling the UGCG-mediated ceramide/glucosylceramide equilibrium as a downstream molecular switch of BCR signaling, also providing novel targeted treatment options beyond current chemotherapy-based regimens.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 118, No. 21 ( 2011-11-18), p. 1766-1766
    Abstract: Abstract 1766 Introduction: Survival of CLL cells is triggered by the B-cell receptor (BCR). However, little is known about metabolic processes, which are influenced by the BCR and which are essential for survival of malignant cells such as sphingolipid metabolism. Certain sphingolipids are considered as bioeffector signaling molecules since they regulate several pathways involved in cell metabolism and survival (e.g. mitochondria). For instance ceramide, as the central molecule in sphingolipid metabolism, contributes to apoptosis and growth inhibition. In contrast, glucosylceramide, generated out of ceramide, is responsible for proliferative attributes such as resistance to apoptosis and to several chemotherapeutics. We therefore investigated the role of sphingolipid metabolism in survival and apoptosis-resistance of CLL cells. Methods and Results: We performed liquid chromatography electrospray ionization tandem mass spectrometry of 8 CLL samples in order to determine sphingolipid levels. Prior analysis, cells were either incubated with anti-IgM immunobeads for 24h or were left native. IgM stimulation significantly increased survival of primary CLL cells (n=9; p=0.0246) shown by flow cytometry. Our mass spectrometric analysis revealed a significant decrease of apoptosis-inducing ceramide in BCR-stimulated CLL cells compared to native controls (16:0 p 〈 0.0001, 22:0 p=0.0325, 24:0 p 〈 0.0001, 24:1 p=0.0010). Simultaneously, glucosylceramide synthesis was significantly increased after BCR engagement pointing out its pro-survival effect (16:0 p=0.0004, 18:0 p=0.0343, 24:1 p=0.0012, 26:1 p=0.0027). The total amount of ceramide and glucosylceramide did not change after IgM stimulation. Most importantly, the ratio between pro-apoptotic ceramide and pro-survival glucosylceramide became almost completely reverted towards glucosylceramide after IgM stimulation. Via PCR, we could identify the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) to catalyze the synthesis of glucosylceramide out of ceramide after BCR engagement (p=0.0126). In order to investigate the functional impact of this observation, we tested whether inhibition of UGCG (UGCGi) in combination with a ceramide-inducing drug might lead to increased apoptosis during IgM stimulation. Thereby, we identified ABT-737 as agent that induces apoptosis through up-regulation of ceramide. As UGCG enzyme inhibitor, we used N-(n-Butyl)deoxygalactonojirimycin (OGB-1) and N-(n-Nonyl)deoxygalactonojirimycin (OGB-2). While IgM stimulation protected CLL cells partly from ABT-737-induced apoptosis as determined by AnnexinV-7AAD and JC-1 staining (mitochondrial outer membrane permeabilization) and subsequent flow cytometry, UGCGi reverted this effect leading to a significantly higher amount of apoptotic cells (n=9; p=0.0021). In order to prove that ABT-737-induced apoptosis influenced the ratio of ceramide:glucosylceramide in primary CLL cells, we performed additional mass spectrometric analyses. Most importantly, we could show that UGCGi reverted the ratio between ceramide:glucosylceramide towards ceramide after IgM stimulation. Protection from ABT-737 by IgM stimulation was also measurable by glucosylceramide-dominated ratio. Finally, inhibition of UGCG during IgM stimulation and ABT-737 treatment resulted in higher apoptosis accompanied by ceramide-dominated ratio. Conclusion: Here we identified how BCR engagement controls lipid metabolism and thereby survival and apoptosis-resistance of primary CLL cells. Our findings suggest that ceramide and glucosylceramide may be mediators of survival of CLL cells upon BCR stimulation. The ratio between ceramide and glucosylceramide seems to be crucial to induce resistance to apoptosis. This study provides potential targets for treatment of CLL beyond current concepts. C.M.W. and L.P.F contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2011
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 3905-3905
    Abstract: Abstract 3905 Background: Apoptosis resistance of chronic lymphocytic leukemia (CLL) cells is mediated by several pro-survival stimuli. In particular, engagement of the B-cell receptor (BCR), CD40-CD40 ligand (CD40L) interaction or stimulation by interleukin-(IL)-4 were identified as major factors to regulate chemoresistance. Sphingolipids are known to be involved in several metabolic pathways involved in chemoresitance. Therefore, we focused on ceramide as pro-apoptotic molecule and its counterpart glucosylceramide, which rather contributes to proliferation and survival. Methods and Results: Applying liquid chromatography electrospray ionization tandem mass spectrometry, we revealed a significant decrease of pro-apoptotic ceramide in BCR/IL-4/CD40L-stimulated primary CLL cells compared to untreated controls (p=0.0258, p=0.0478, p=0.0114). Anti-apoptotic glucosylceramide levels were significantly increased after BCR cross-linking (p=0.0435) while other stimuli caused no relevant change in glucosylceramide expression. We identified BCR engagement to catalyze the crucial modification of ceramide to glucosylceramide via the enzyme UDP-glucose ceramide glucosyltransferase (UGCG) (p=0.0001). Besides specific UGCG inhibitors, we could show for the first time that IgM-mediated UGCG expression was significantly inhibited by the novel and highly effective PI3Kδ and BTK inhibitors CAL-101 and PCI-32765, which were able to revert IgM-induced apoptosis resistance of CLL cells. Recently published data revealed sphingolipids to be essential for mediation of apoptosis via mitochondria. Therefore, we chose ABT-737 – a well-known and also mitochondria-targeting drug – as candidate partner for PI3Kδ and BTK inhibition. When combining each tyrosine kinase inhibitor with ABT-737, a synergistic apoptotic effect could be documented, even under protection by BCR stimulation. Conclusion: In summary, we could demonstrate that sphingolipids are critically involved in CLL pathogenesis. UGCG could be identified as drugable target by the novel kinase inhibitors CAL-101 and PCI-32765 resulting in even synergistic apoptosis following additional application of ABT-737. Sphingolipids seem to offer further targets providing novel treatment options in CLL. C.M.W. and L.P.F. contributed equally to this work. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3597-3597
    Abstract: Abstract 3597 Introduction: The microenvironment and especially the antigenic stimulation of the B-cell receptor on the surface of the malignant cell play a crucial role in the pathogenesis of chronic lymphocytic leukemia (CLL). Aberrant Nuclear Factor kappa B (NFκB) activity is another major hallmark of B-cell malignancies as well as of CLL. NFκB-dependent genes are involved in anti-apoptotic regulation, cell proliferation and metastasis and are responsible for survival and proliferation of tumors. However, the mechanisms of NFκB over-expression in CLL still remain to be elucidated. Prior studies revealed that cylindromatosis (CYLD) function might be of special interest in CLL since it inhibits signaling via TRAF2 and c-IAP1/2, which are known to be over-expressed in CLL. CYLD inactivation might therefore result in sustained NFκB signaling. The enzyme CYLD, a tumor suppressor that functions as a deubiquitinase, plays a role in other physiological aspects such as cell cycle response, inflammatory and immune processes. Moreover, it could be shown that impaired CYLD activity leads to increased NFκB activity in multiple myeloma cells demonstrating the negative regulatory function of CYLD regarding NFκB. Aside from CYLD, which is constitutively active preventing uncontrolled transcription factor activation, the enzyme A20, a key player in negative feedback loop regulation of NFκB, operates via induction, supposing that both enzymes might proceed at different phases of NFκB signaling. A20, also known as tumor necrosis factor alpha-induced protein 3 (TNFAIP3), acts as an ubiquitin-editing enzyme. Its inactivation is involved in immunopathologies (e.g. Crohn's disease, rheumatoid arthritis, systemic lupus erythematodes, psoriasis and type 1 diabetes mellitus) and in tumorigenesis. Frequent mutations in the A20 locus – leading to sustained NFκB activity – could be shown to play a dominant role in development of different B-cell malignancies. Experimental design and results: Based on genome-wide gene expression profiling analysis of CLL samples (n=8) compared to healthy donor B-cells (n=5), CYLD is expressed and its expression was reduced following B-cell receptor cross-linking (24 hours) (p=0,0036) contrary to A20 that could be induced after receptor stimulation (p=0,044). These results underline the role of B-cell receptor signaling in survival regulation of CLL cells and also its in-direct influence on NFκB activity. Recently, our report revealed by methylation analysis and additional sequence analysis that the A20 region neither contains any methylation (64 CLL patients versus 10 healthy donors) nor mutation (55 CLL patients with sequence analysis of exons 2–9 of the tnfaip3 gene) contrary to reports from other B-cell malignancies. Moreover, A20 expression could be confirmed by immunoblotting showing comparable results to healthy B-cells. In order to check if such alterations in the enzyme CYLD might occur in CLL leading to sustained activity of NFκB similar to other B-cell entities, we performed analysis of the methylation status of the promoter region of CYLD in 64 CLL patients compared to 10 DNAs of CD19-selected B-cells from healthy donors. Epigenetic alterations of the CYLD promoter could not be identified. Conclusions: Here we present the first report of epigenetic and mRNA expression analysis concerning the deubiquitinase CYLD in CLL. We identified that CYLD as well as A20 are regulated by B-cell receptor signaling. The opposed expression of CYLD and A20 after stimulation of the receptor might contribute to an almost balanced and well-adjusted NFκB activity. Our results of lacking epigenetic alteration in both proteins (A20 and CYLD) and absence of mutations in A20 indicate that malignant development in CLL differs from most of other B-cell malignancies, which show frequent inactivation of either CYLD or A20. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...