GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 83, No. 7_Supplement ( 2023-04-04), p. 234-234
    Abstract: Advancements in state-of-the-art molecular profiling techniques have resulted in better understanding of pediatric cancers and driver events. It has become apparent that pediatric cancers are significantly more heterogeneous than previously thought as evidenced by the number of novel entities and subtypes that have been identified with distinct molecular and clinical characteristics. For most of these newly recognized entities there are extremely limited treatment options available. The ITCC-P4 consortium is an international collaboration between several European academic centers and pharmaceutical companies, with the overall aim to establish a sustainable platform of & gt;400 molecularly well-characterized PDX models of high-risk pediatric cancers, their tumors and matching controls and to use the PDX models for in vivo testing of novel mechanism-of-action based treatments. Currently, 251 models are fully characterized, including 182 brain and 69 non-brain PDX models, representing 112 primary models, 92 relapse, 42 metastasis and 4 progressions under treatment models. Using low coverage whole-genome and whole exome sequencing, somatic mutation calling, DNA copy number and methylation analysis we aim to define genetic features in our PDX models and estimate the molecular fidelity of PDX models compared to their patient tumor. Based on DNA methylation profiling we identified 43 different tumor subgroups within 18 cancer entities. Mutational landscape analysis identified key somatic and germline oncogenic drivers. Ependymoma PDX models displayed the C11orf95-RELA fusion event, YAP1, C11orf95 and RELA structural variants. Medulloblastoma models were driven by MYCN, TP53, GLI2, SUFU and PTEN. High-grade glioma samples showed TP53, ATRX, MYCN and PIK3CA somatic SNVs, along with focal deletions in CDKN2A in chromosome 9. Neuroblastoma models were enriched for ALK SNVs and/or MYCN focal amplification, ATRX SNVs and CDKN2A/B deletions. Tumor mutational burden across entities and copy number analysis was performed to identify allele-specific copy number detection in tumor-normal pairs. Large chromosomal aberrations (deletions, duplications) detected in the PDX models were concurrent with molecular alterations frequently observed in each tumor type -isochromosome 17 was detected in 5 medulloblastoma models, while deletion of chromosome arm 1p or gain of parts of 17q in neuroblastomas which correlate with tumor progression. We observe clonal evolution of somatic variants not only in certain PDX-tumor pairs but also between disease states. The multi-omics approach in this study provides insight into the mutational landscape and patterns of the PDX models thus providing an overview of molecular mechanisms facilitating the identification and prioritization of oncogenic drivers and potential biomarkers for optimal treatment therapies. Citation Format: Apurva Gopisetty, Aniello Federico, Didier Surdez, Yasmine Iddir, Sakina Zaidi, Alexandra Saint-Charles, Joshua Waterfall, Elnaz Saberi-Ansari, Justyna Wierzbinska, Andreas Schlicker, Norman Mack, Benjamin Schwalm, Christopher Previti, Lena Weiser, Ivo Buchhalter, Anna-Lisa Böttcher, Martin Sill, Robert Autry, Frank Estermann, David Jones, Richard Volckmann, Danny Zwijnenburg, Angelika Eggert, Olaf Heidenreich, Fatima Iradier, Irmela Jeremias, Heinrich Kovar, Jan-Henning Klusmann, Klaus-Michael Debatin, Simon Bomken, Petra Hamerlik, Maureen Hattersley, Olaf Witt, Louis Chesler, Alan Mackay, Johannes Gojo, Stefano Cairo, Julia Schueler, Johannes Schulte, Birgit Geoerger, Jan J. Molenaar, David J. Shields, Hubert N. Caron, Gilles Vassal, Louis F. Stancato, Stefan M. Pfister, Natalie Jaeger, Jan Koster, Marcel Kool, Gudrun Schleiermacher. ITCC-P4: Genomic profiling and analyses of pediatric patient tumor and patient-derived xenograft (PDX) models for high throughput in vivo testing [abstract] . In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 234.
    Type of Medium: Online Resource
    ISSN: 1538-7445
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2023
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Neuro-Oncology, Oxford University Press (OUP), Vol. 24, No. Supplement_1 ( 2022-06-03), p. i189-i189
    Abstract: Thanks to state-of-the-art molecular profiling techniques we by now have a much better understanding of pediatric cancers and what is driving them. On the other hand, we have also realized that pediatric cancers are much more heterogeneous than previously thought. Many new types and subtypes of pediatric cancers have been identified with distinct molecular and clinical characteristics. However, for many if not most of these new types and subtypes there is no specific treatment available, yet. In order to develop specific treatment protocols and to increase survival rates for pediatric cancer patients further, both at diagnosis and relapse/metastasis, we need a large collection of well-characterized preclinical models representing all the different types and subtypes. These models can be used for preclinical drug testing to prioritize the pediatric development of anticancer drugs that would be best targeting pediatric tumor biology. The ITCC-P4 consortium, which is a collaboration between many academic centers across Europe, several companies involved in in vivo preclinical testing, and ten pharmaceutical companies, started in 2017 with the overall aim to establish a sustainable platform of & gt;400 molecularly well-characterized PDX models of high-risk pediatric cancers and to use them for in vivo testing of novel mechanism-of-action based treatments. Currently, 340 models have been fully established, including 87 brain tumor models and 253 non-brain tumor models, together representing many different tumor types both from primary and relapsed/metastatic disease. Out of these 340 models, 252 have been fully molecularly characterized, most of them together with their matching original tumors, and almost of all these models are currently being subjected to in vivo testing using three standard of care drugs and six novel mechanism-of-action based drugs. In this presentation, an update on the current status of the ITCC-P4 platform and the data we collectively have generated thus far will be presented.
    Type of Medium: Online Resource
    ISSN: 1522-8517 , 1523-5866
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2022
    detail.hit.zdb_id: 2094060-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Nature, Springer Science and Business Media LLC, Vol. 559, No. 7714 ( 2018-7), p. E10-E10
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Nature, Springer Science and Business Media LLC, Vol. 555, No. 7696 ( 2018-03-15), p. 321-327
    Abstract: Pan-cancer analyses that examine commonalities and differences among various cancer types have emerged as a powerful way to obtain novel insights into cancer biology. Here we present a comprehensive analysis of genetic alterations in a pan-cancer cohort including 961 tumours from children, adolescents, and young adults, comprising 24 distinct molecular types of cancer. Using a standardized workflow, we identified marked differences in terms of mutation frequency and significantly mutated genes in comparison to previously analysed adult cancers. Genetic alterations in 149 putative cancer driver genes separate the tumours into two classes: small mutation and structural/copy-number variant (correlating with germline variants). Structural variants, hyperdiploidy, and chromothripsis are linked to TP53 mutation status and mutational signatures. Our data suggest that 7–8% of the children in this cohort carry an unambiguous predisposing germline variant and that nearly 50% of paediatric neoplasms harbour a potentially druggable event, which is highly relevant for the design of future clinical trials.
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...