GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (3)
  • Schram, Miranda T.  (3)
  • 1
    In: Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 75, No. 6 ( 2020-06), p. 1607-1614
    Abstract: The mechanisms underlying cognitive impairment are incompletely understood but may include arterial stiffness and microvascular dysfunction. In the population-based Maastricht Study, we investigated the association between arterial stiffness and cognitive performance, and whether any such association was mediated by microvascular dysfunction. We included cross-sectional data of 2544 participants (age, 59.7 years; 51.0% men; 26.0% type 2 diabetes mellitus). We used carotid-femoral pulse wave velocity and carotid distensibility coefficient as measures of aortic and carotid stiffness, respectively. We calculated a composite score of microvascular dysfunction based on magnetic resonance imaging features of cerebral small vessel disease, flicker light-induced retinal arteriolar and venular dilation response, albuminuria, and plasma biomarkers of microvascular dysfunction (sICAM-1 [soluble intercellular adhesion molecule-1], sVCAM-1 [soluble vascular adhesion molecule-1] , sE-selectin [soluble E-selectin], and vWF [von Willebrand factor] ). Cognitive domains assessed were memory, processing speed, and executive function. A cognitive function score was calculated as the average of these domains. Higher aortic stiffness (per m/s) was associated with lower cognitive function (β, −0.018 SD [95% CI, −0.036 to −0.000]) independent of age, sex, education, and cardiovascular risk factors, but higher carotid stiffness was not. Higher aortic stiffness (per m/s) was associated with a higher microvascular dysfunction score (β, 0.034 SD [95% CI, 0.014 to 0.053] ), and a higher microvascular dysfunction score (per SD) was associated with lower cognitive function (β, −0.089 SD [95% CI, −0.124 to −0.053]). Microvascular dysfunction significantly explained 16.2% of the total effect of aortic stiffness on cognitive function. The present study showed that aortic stiffness, but not carotid stiffness, is independently associated with worse cognitive performance, and that this association is in part explained by microvascular dysfunction.
    Type of Medium: Online Resource
    ISSN: 0194-911X , 1524-4563
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2094210-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of the American Heart Association, Ovid Technologies (Wolters Kluwer Health), Vol. 9, No. 20 ( 2020-10-20)
    Abstract: Arterial stiffness is an independent risk factor for cardiovascular disease and can be beneficially influenced by physical activity. However, it is not clear how an individual’s physical activity pattern over a week is associated with arterial stiffness. Therefore, we examined the associations of the amount and pattern of higher intensity physical activity with arterial stiffness. Methods and Results Data from the Maastricht Study (n=1699; mean age: 60±8 years, 49.4% women, 26.9% type 2 diabetes mellitus) were used. Arterial stiffness was assessed by carotid‐to‐femoral pulse wave velocity and carotid distensibility. The amount (continuous variable as h/wk) and pattern (categorical variable) of higher intensity physical activity were assessed with the activPAL3. Activity groups were: inactive ( 〈 75 min/wk), insufficiently active (75–150 min/wk), weekend warrior ( 〉 150 min/wk in ≤2 sessions), and regularly active ( 〉 150 min/wk in ≥3 sessions). In the fully adjusted model (adjusted for demographic, lifestyle, and cardiovascular risk factors), higher intensity physical activity was associated with lower carotid‐to‐femoral pulse wave velocity (amount: β = −0.05, 95% CI, −0.09 to −0.01; insufficiently active: β = −0.33, 95% CI, −0.55 to −0.11; weekend warrior: β = −0.38, 95% CI, −0.64 to −0.12; and regularly active: β = −0.46, 95% CI, −0.71 to −0.21 [reference: inactive]). These associations were stronger in those with type 2 diabetes mellitus. There was no statistically significant association between higher intensity physical activity with carotid distensibility. Conclusions Participating in higher intensity physical activity was associated with lower carotid‐to‐femoral pulse wave velocity, but there was no difference between the regularly actives and the weekend warriors. From the perspective of arterial stiffness, engaging higher intensity physical activity, regardless of the weekly pattern, may be an important strategy to reduce the risk of cardiovascular disease, particularly in individuals with type 2 diabetes mellitus.
    Type of Medium: Online Resource
    ISSN: 2047-9980
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 2653953-6
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Journal of Hypertension, Ovid Technologies (Wolters Kluwer Health), Vol. 39, No. 3 ( 2021-03), p. 494-502
    Abstract: : An exaggerated exercise SBP, which is potentially modifiable, may be associated with incident depressive symptoms via an increased pulsatile pressure load on the brain. However, the association between exaggerated exercise SBP and incident depressive symptoms is unknown. Therefore, we examined whether exaggerated exercise SBP is associated with a higher risk of depressive symptoms over time. Methods : We used longitudinal data from the population-based Maastricht Study, with only individuals free of depressive symptoms at baseline included ( n  = 2121; 51.3% men; age 59.5 ± 8.5 years). Exercise SBP was measured at baseline with a submaximal exercise cycle test. We calculated a composite score of exercise SBP based on four standardized exercise SBP measures: SBP at moderate workload, SBP at peak exercise, SBP change per minute during exercise and SBP 4 min after exercise. Clinically relevant depressive symptoms were determined annually at follow-up and defined as a Patient Health Questionnaire score of at least 10. Results : After a mean follow-up of 3.9 years, 175 participants (8.3%) had incident clinically relevant depressive symptoms. A 1 SD higher exercise SBP composite score was associated with a higher incidence of clinically relevant depressive symptoms [hazard ratio: 1.27 (95% confidence interval: 1.04–1.54)]. Results were adjusted for age, sex, education level, glucose metabolism status, lifestyle, cardiovascular risk factors, resting SBP and cardiorespiratory fitness. Conclusion : A higher exercise SBP response is associated with a higher incidence of clinically relevant depressive symptoms.
    Type of Medium: Online Resource
    ISSN: 0263-6352 , 1473-5598
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2017684-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...