GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2008
    In:  Geophysical Research Letters Vol. 35, No. 10 ( 2008-05)
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 35, No. 10 ( 2008-05)
    Abstract: A new version of SODA, which covers the time period 1958–2005, is used to analyze decadal variability of the Pacific Subtropical Cell (STC) circulation. The analysis is based on transport time series across 9°S and 9°N. At the interannual time scale, STC convergence anomalies decrease during El Niños and increase during La Niñas through Sverdrup transport convergence changes. At decadal time scales, the assimilation shows a reduction of interior STC convergence of about 8 Sv from the 1960s to the 1990s and a subsequent rebound into the early 2000s by a similar amount, in agreement with the STC tendencies reported earlier from geostrophic section analysis, and associated with the occurrence and intensity of ENSO events among the decades analyzed. The results are compared with, and differ significantly from, those obtained by the German ECCO (GECCO) assimilation.
    Type of Medium: Online Resource
    ISSN: 0094-8276 , 1944-8007
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2008
    In:  Journal of Geophysical Research Vol. 113, No. C4 ( 2008-04-12)
    In: Journal of Geophysical Research, American Geophysical Union (AGU), Vol. 113, No. C4 ( 2008-04-12)
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2008
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Meteorological Society ; 2004
    In:  Journal of Physical Oceanography Vol. 34, No. 4 ( 2004-04), p. 817-843
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 34, No. 4 ( 2004-04), p. 817-843
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2004
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Meteorological Society ; 1998
    In:  Journal of Physical Oceanography Vol. 28, No. 10 ( 1998-10), p. 1904-1928
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 28, No. 10 ( 1998-10), p. 1904-1928
    Type of Medium: Online Resource
    ISSN: 0022-3670 , 1520-0485
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 1998
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Meteorological Society ; 2005
    In:  Journal of Physical Oceanography Vol. 35, No. 11 ( 2005-11-01), p. 2031-2053
    In: Journal of Physical Oceanography, American Meteorological Society, Vol. 35, No. 11 ( 2005-11-01), p. 2031-2053
    Abstract: Repeated shipboard observation sections across the boundary flow off northeastern Brazil as well as acoustic Doppler current profiler (ADCP) and current-meter records from a moored boundary array deployed during 2000–04 near 11°S are analyzed here for both the northward warm water flow by the North Brazil Undercurrent (NBUC) above approximately 1100 m and the southward flow of North Atlantic Deep Water (NADW) underneath. At 5°S, the mean from nine sections yields an NBUC transport of 26.5 ± 3.7 Sv (Sv ≡ 106 m3 s−1) along the boundary; at 11°S the mean NBUC transport from five sections is 25.4 ± 7.4 Sv, confirming that the NBUC is already well developed at 11°S. At both latitudes a persistent offshore southward recirculation between 200- and 1100-m depth reduces the net northward warm water flow through the 5°S section (west of 31.5°W) to 22.1 ± 5.3 Sv and through the 11°S section to 21.7 ± 4.1 Sv (west of 32.0°W). The 4-yr-long NBUC transport time series from 11°S yields a seasonal cycle of 2.5 Sv amplitude with its northward maximum in July. Interannual NBUC transport variations are small, varying only by ±1.2 Sv during the four years, with no detectable trend. The southward flow of NADW within the deep western boundary current at 5°S is 25.5 ± 8.3 Sv with an offshore northward recirculation, yielding a nine-section mean of 20.3 ± 10.1 Sv west of 31.5°W. For Antarctic Bottom Water, a net northward flow of 4.4 ± 3.0 Sv is determined at 5°S. For the 11°S section, the moored array data show a pronounced energy maximum at 60–70-day period in the NADW depth range, which was identified in related work as deep eddies translating southward along the boundary. Based on a kinematic eddy model fit to the first half of the moored time series, the mean NADW transfer by the deep eddies at 11°S was estimated to be about 17 Sv. Given the large interannual variability of the deep near-boundary transport time series, which ranged from 14 to 24 Sv, the 11°S mean was considered to be not distinguishable from the mean at 5°S.
    Type of Medium: Online Resource
    ISSN: 1520-0485 , 0022-3670
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2005
    detail.hit.zdb_id: 2042184-9
    detail.hit.zdb_id: 184162-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 1995
    In:  Journal of Geophysical Research: Oceans Vol. 100, No. C12 ( 1995-12-15), p. 24745-24760
    In: Journal of Geophysical Research: Oceans, American Geophysical Union (AGU), Vol. 100, No. C12 ( 1995-12-15), p. 24745-24760
    Abstract: During March 1994 a survey of the western boundary of the tropical Atlantic, between 10°N and 10°S, was carried out by conductivity‐temperature‐depth and current profiling using shipboard and lowered acoustic Doppler current profilers. In the near‐surface layer, above σ Θ = 24.5, the inflow into the boundary regime came dominantly from low latitudes; out of the 14 Sv that crossed the equator in the upper part of the North Brazil Current (NBC), only 2 Sv originated from south of 5°S, while 12 Sv came in from the east at 1°–5°S with the South Equatorial Current (SEC). After crossing the equator near 44°W, only a minor fraction of the near‐surface NBC retroflected eastward, while a net through flow of about 12 Sv above σ Θ = 24.5 continued northwestward along the boundary. By contrast, in the isopycnal range σ Θ = 24.5–26.8 encompassing the Equatorial Undercurrent (EUC), the source waters of the equatorial circulation were dominantly of higher‐latitude South Atlantic origin. While only 3 Sv of eastern equatorial water entered the region through the SEC at 3°–5°S, there was an inflow of 10 Sv of South Atlantic water in the North Brazil Undercurrent (NBUC) along the South American coast that originated south of 10°S. The transport of 14 Sv arriving at the equator along the boundary in the undercurrent layer was almost entirely retroflected into the EUC with only marginal northern water additions along its path to 35°W. The off‐equatorial undercurrents in the upper thermocline, the South and North Equatorial Undercurrents carried only small transports across 35°W, of 5 Sv and 3 Sv, respectively, dominantly supplied out of SEC recirculation rather than out of the boundary current. Still deeper, three zonal undercurrents were observed: the westward‐flowing Equatorial Intermediate Current (EIC) in the depth range 200–900 m below the EUC, and two off‐equatorial eastward undercurrents, the Northern and Southern Intermediate Countercurrents (NICC, SICC) at 400–1000 m and 1°–3° latitude. In the lower part of the NBUC there was an Antarctic Intermediate Water (AAIW) inflow along the coast of 6 Sv, and there was a clear connection at the AAIW level to the SICC by low salinities and high oxygens and a weaker suggestion also that some supply of the NICC might be through AAIW out of the deep NBUC.
    Type of Medium: Online Resource
    ISSN: 0148-0227
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 1995
    detail.hit.zdb_id: 2033040-6
    detail.hit.zdb_id: 3094104-0
    detail.hit.zdb_id: 2130824-X
    detail.hit.zdb_id: 2016813-5
    detail.hit.zdb_id: 2016810-X
    detail.hit.zdb_id: 2403298-0
    detail.hit.zdb_id: 2016800-7
    detail.hit.zdb_id: 161666-3
    detail.hit.zdb_id: 161667-5
    detail.hit.zdb_id: 2969341-X
    detail.hit.zdb_id: 161665-1
    detail.hit.zdb_id: 3094268-8
    detail.hit.zdb_id: 710256-2
    detail.hit.zdb_id: 2016804-4
    detail.hit.zdb_id: 3094181-7
    detail.hit.zdb_id: 3094219-6
    detail.hit.zdb_id: 3094167-2
    detail.hit.zdb_id: 2220777-6
    detail.hit.zdb_id: 3094197-0
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Elsevier BV ; 2009
    In:  Deep Sea Research Part I: Oceanographic Research Papers Vol. 56, No. 6 ( 2009-6), p. 926-938
    In: Deep Sea Research Part I: Oceanographic Research Papers, Elsevier BV, Vol. 56, No. 6 ( 2009-6), p. 926-938
    Type of Medium: Online Resource
    ISSN: 0967-0637
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 1500309-7
    detail.hit.zdb_id: 1146810-5
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    American Geophysical Union (AGU) ; 2002
    In:  Geophysical Research Letters Vol. 29, No. 17 ( 2002-09), p. 21-1-21-4
    In: Geophysical Research Letters, American Geophysical Union (AGU), Vol. 29, No. 17 ( 2002-09), p. 21-1-21-4
    Type of Medium: Online Resource
    ISSN: 0094-8276
    Language: English
    Publisher: American Geophysical Union (AGU)
    Publication Date: 2002
    detail.hit.zdb_id: 2021599-X
    detail.hit.zdb_id: 7403-2
    SSG: 16,13
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...