GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Scholl, Sebastian  (2)
  • 2010-2014  (2)
  • 1
    In: Blood, American Society of Hematology, Vol. 116, No. 21 ( 2010-11-19), p. 3314-3314
    Abstract: Abstract 3314 Introduction: The FLT3-internal tandem duplication is the most frequent genetic aberration in normal karyotype acute myeloid leukemia (NK-AML) and associated with a poor prognosis. Patients with FLT3-ITD positive AML relapsing after allogenic stem cell transplantation (allo-SCT) have very limited therapeutic options. Sorafenib is a multikinase inhibitor, which is approved in Europe for the treatment of metastatic renal cell and hepatocellular carcinoma. It inhibits the FLT3 receptor tyrosine kinase, and, at low nanomolar concentrations also the mutated variant of FLT3, FLT3-ITD. Sorafenib also inhibits Raf, the platelet derived growth factor receptor (PDGFR) and the vascular endothelial growth factor receptor (VEGFR). We have previously reported that sorafenib monotherapy is effective in relapsed FLT3-ITD positive AML (Metzelder et al., Blood 2009; Metzelder et al., ASH 2009, poster #2060). Here we significantly extend these compassionate use experiences by reporting on clinical response details from 39 relapsed or refractory FLT3-ITD positive AML patients treated with sorafenib monotherapy. Methods: A questionnaire was developed and sent to 60 centers in Germany, Singapore and the United States, where FLT3-ITD-positive patients had been treated with sorafenib monotherapy. 26 centers returned information on therapy details of 55 patients. These included data on age, FAB-classification, karyotype, FLT3-ITD molecular testing, type and duration of response to prior therapy and to sorafenib, sorafenib dosing and tolerability. 16 patients were excluded from further analysis because of FLT3-ITD negativity or application of chemotherapy concomitant to sorafenib. Results: There were 39 evaluable patients (20 male, 19 female), grouped into i) primary refractory patients (PR-P) (n=11), receiving one (n=5) or two cycles (n=6) of chemotherapy before commencing sorafenib, ii) relapsing patients (REL-P) (n=12) with hematological recurrence after between one and four cycles of prior chemotherapy, syngenic, or autologous SCT, and iii) patients relapsing after allogenic SCT (SCT-P) (n=16). One patient was treated first line with sorafenib. One patient was treated before and after allo-SCT. Patients received between 200mg and 800mg sorafenib p.o. daily. The median treatment duration was 71 days (range, 13 to 270) for PR-P, 76 days (range, 9 to 160 days) for REL-P, and 76 days (range, 20 to 489 days) for SCT-P. All reported patients in this cohort responded to sorafenib. In the PR-P group, there were 6 hematological remissions (HR), characterized by complete (n=4) or near complete peripheral blast clearance (n=2), 4 complete remissions (bone marrow blasts 〈 5% with (CR) or without (CRp) normalization of peripheral blood counts) and one complete molecular remission (CMR, molecular negativity for FLT3-ITD). Six of these 11 PR-P underwent allo-SCT after responding to sorafenib induction. In the REL-P group there was one patient with a partial blast clearance (PR), 8 HR, 2 bone marrow responses (which includes a HR) and 1 CRp. In the SCT-P group there were 3PR, 2HR, 7 BMR and 4 CMR. Notably, the median time to treatment failure due to frank clinical sorafenib resistance was 119 days for PR-P and REL-P, but was not reached in the SCT-P group. This difference was statistically significant (p-value 0.0217). Sorafenib was generally well tolerated. Pancytopenia or thrombocytopenia grade III and IV were the most significant but manageable side effects. Other reported side effects such as diarrhea, exanthema were documented from the centers as being minor. Conclusion: This analysis on a large cohort of 39 FLT3-ITD positive patients confirms our previous reports on the remarkable clinical activity of sorafenib monotherapy in FLT3-ITD positive AML. Evidence is accumulating that sorafenib may be particularly effective in the context of allo-SCT, where long-term responses were seen. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2010
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 870-870
    Abstract: Introduction: Treatment of acute myeloid leukemia (AML) in elderly patients remains challenging. Low-dose DNA hypomethylating agents are a therapeutic option in myelodysplastic syndromes and AML. However, the mechanism of action of hypomethylating agents and the role of induction of DNA hypomethylation in the clinical response is still unclear. To unravel the in vivoeffects of sequential cycles of decitabine, we set out to characterize methylomes of leukemic blasts, T cells (presumably not part of the malignant clone) and granulocytes before and during treatment of AML patients enrolled in the randomized phase II DECIDER clinical trial (NCT00867672). We developed a statistical model for longitudinal data analysis to identify the strongest hypomethylation response. Methods: Peripheral blood mononuclear cells (PBMC) from AML patients were collected before and during therapy (i.v. 20 mg/m2 decitabine for 5 days, with or without subsequent oral drug add-on). Leukemic blasts and T-cells were isolated using automatic magnetic sorting of cells (autoMACS) labelled with anti-human CD34, CD117 and CD3 MACS microbeads (Miltenyi Biotec), respectively. Granulocytes were isolated using dextran sedimentation. Cell type specific genome-wide DNA methylation profiles were obtained using Infinium Human Methylation 450 BeadChip arrays. Data were analyzed using R packages RnBeads applying beta mixture quantile dilation for normalization (Teschendorff et al. Bioinformatics, 29:189–196, 2013) and a modified version of NHMMfdr for multiple testing. Results: Peripheral blood blasts (median purity: 92%) were isolated from 20 patients, and T cells (median purity: 94%) from 26 patients before treatment and on days 4 and/or 8 and 15 of treatment cycle 1. From 10 patients, blasts and T cells were also collected during and/or after cycle 2. In total, until now 127 methylomes (46 blasts, 47 T cells, 34 granulocytes) were generated and used for mathematical modelling. Since the trial is still recruiting, genome-wide methylation was interpreted blinded to all clinical data including drug add-on (ATRA, valproic acid). First, the methylation dynamics of each individual CpG site described by a specified summary statistics were identified. Then, inter-probe distance and CpG annotation were incorporated to explain the dependence structure between CpG sites. In order to control the false discovery rate (FDR), we adapted a method proposed for differential DNA methylation (Kuan & Chiang, Biometrics 68: 774–783, 2012). The summary statistics for each CpG site were modelled to follow a non–homogeneous hidden Markov model. Statistical testing was validated by simulations revealing a very high discriminative power for affected CpGs even with very low methylation dynamics. Applying the model to blasts and T cells, extensive differences in the in vivomethylation changes became apparent. In blasts, 13% of CpG (59,920 CpGs of total 460,343 CpGs) showed significant DNA hypomethylation (Δβ 〉 0.1, FDR 〈 0.05) shared between patients by day 8, 75.8% of which (45,428 CpGs) were at least partially remethylated by day 15. Out of the 59,920 CpGs hypomethylated by day 8, 21.2% were located in promoters, 50.1% in gene bodies and 28.7% in intergenic regions. In contrast, in T cells only 2 CpGs out of 460,343 CpGs were significantly hypomethylated. This low number is partially due to the higher inter-individual variance as compared to leukemic blasts. Increases in DNA methylation across all patients were very rare, with only 38 CpGs consistently and significantly hypermethylated in blasts and none in T cells. Methylome analysis in granulocytes is currently ongoing. Conclusions: Our mathematical model revealed significant DNA hypomethylation by day 8, with striking remethylation by day 15 from start of decitabine treatment in AML blasts in vivo. Most of the hypomethylated CpGs resided in non-promoter regions. In contrast, T-cells were much less affected, which might be due to the low cell division rate and the fact that they are non-malignant cells. This model will hopefully allow determination whether the effects of decitabine are targeted or random, by including sequential samples from later treatment cycles. Unblinding of the patients' clinical data will reveal potential biomarkers of response to epigenetic therapy. Disclosures Lübbert: Ratiopharm: received study drug valproic acid, received study drug valproic acid Other; Johnson & Johnson: Honoraria, Membership on an entity's Board of Directors or advisory committees, received study drug decitabine Other.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...