GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood Advances, American Society of Hematology, Vol. 6, No. 6 ( 2022-03-22), p. 1780-1796
    Abstract: How genetic haploinsufficiency contributes to the clonal dominance of hematopoietic stem cells (HSCs) in del(5q) myelodysplastic syndrome (MDS) remains unresolved. Using a genetic barcoding strategy, we performed a systematic comparison on genes implicated in the pathogenesis of del(5q) MDS in direct competition with each other and wild-type (WT) cells with single-clone resolution. Csnk1a1 haploinsufficient HSCs expanded (oligo)clonally and outcompeted all other tested genes and combinations. Csnk1a1−/+ multipotent progenitors showed a proproliferative gene signature and HSCs showed a downregulation of inflammatory signaling/immune response. In validation experiments, Csnk1a1−/+ HSCs outperformed their WT counterparts under a chronic inflammation stimulus, also known to be caused by neighboring genes on chromosome 5. We therefore propose a crucial role for Csnk1a1 haploinsufficiency in the selective advantage of 5q-HSCs, implemented by creation of a unique competitive advantage through increased HSC self-renewal and proliferation capacity, as well as increased fitness under inflammatory stress.
    Type of Medium: Online Resource
    ISSN: 2473-9529 , 2473-9537
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2022
    detail.hit.zdb_id: 2876449-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Experimental Medicine, Rockefeller University Press, Vol. 211, No. 4 ( 2014-04-07), p. 605-612
    Abstract: Despite extensive insights into the underlying genetics and biology of acute myeloid leukemia (AML), overall survival remains poor and new therapies are needed. We found that casein kinase 1 α (Csnk1a1), a serine-threonine kinase, is essential for AML cell survival in vivo. Normal hematopoietic stem and progenitor cells (HSPCs) were relatively less affected by shRNA-mediated knockdown of Csnk1a1. To identify downstream mediators of Csnk1a1 critical for leukemia cells, we performed an in vivo pooled shRNA screen and gene expression profiling. We found that Csnk1a1 knockdown results in decreased Rps6 phosphorylation, increased p53 activity, and myeloid differentiation. Consistent with these observations, p53-null leukemias were insensitive to Csnk1a1 knockdown. We further evaluated whether D4476, a casein kinase 1 inhibitor, would exhibit selective antileukemic effects. Treatment of leukemia stem cells (LSCs) with D4476 showed highly selective killing of LSCs over normal HSPCs. In summary, these findings demonstrate that Csnk1a1 inhibition causes reduced Rps6 phosphorylation and activation of p53, resulting in selective elimination of leukemia cells, revealing Csnk1a1 as a potential therapeutic target for the treatment of AML.
    Type of Medium: Online Resource
    ISSN: 1540-9538 , 0022-1007
    RVK:
    Language: English
    Publisher: Rockefeller University Press
    Publication Date: 2014
    detail.hit.zdb_id: 1477240-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 4-4
    Abstract: The immunomodulatory (IMiD) drug lenalidomide is a highly effective treatment for multiple myeloma and myelodysplastic syndrome (MDS) with deletion of chromosome 5q (del(5q)). Recently, we and others demonstrated that lenalidomide activates the CRBN-CRL4 E3 ubiquitin ligase to ubiquitinate IKZF1 and IKZF3. Degradation of these lymphoid transcription factors explains lenalidomide’s growth inhibition of multiple myeloma cells and increased IL-2 release from T cells. However, it is unlikely that degradation of IKZF1 and IKZF3 accounts for lenalidomide’s activity in MDS with del(5q). Instead, we hypothesized that ubiquitination of a distinct CRBN substrate in myeloid cells explains the efficacy of lenalidomide in del(5q) MDS. Applying quantitative proteomics in the myeloid cell line KG-1, we identified a novel target, casein kinase 1A1 (CSNK1A1), that had increased ubiquitination and decreased protein abundance following lenalidomide treatment. CSNK1A1 is encoded in the del(5q) commonly deleted region and is thus a potential lenalidomide target in del(5q) MDS. Previous studies have demonstrated that Csnk1a1 is a therapeutic target in a murine model of acute myeloid leukemia. We validated that lenalidomide treatment decreased CSNK1A1 protein levels in multiple human cell lines in a dose-dependent manner without altering CSNK1A1 mRNA levels. Moreover, lenalidomide treatment increased ubiquitination of CSNK1A1 in cell lines. The decrease in CSNK1A1 protein levels in response to lenalidomide was abrogated by treatment with the proteasome inhibitor MG132 and by Cullin-RING ubiquitin ligase inhibition with MLN4924. CSNK1A1 co-immunoprecipitated with CRBN in the presence of lenalidomide, demonstrating direct interaction of CSNK1A1 with the substrate adaptor for the ubiquitin ligase. Homozygous genetic inactivation of the CRBN gene by CRISPR/Cas9 genome editing in 293T cells eliminated lenalidomide-induced degradation of CSNK1A1. In aggregate, these experiments demonstrate that CSNK1A1 is a CRBN-CRL4 substrate that is ubiquitinated and degraded in the presence of lenalidomide. We next explored how degradation of CSNK1A1 might explain the specificity of lenalidomide for cells with del(5q). ShRNA-mediated knockdown of CSNK1A1 sensitized primary human CD34+ cells to lenalidomide treatment, indicating that haploinsufficiency for CSNK1A1 might increase lenalidomide sensitivity in del(5q) hematopoietic cells. We sought to further validate this finding in a genetically defined Csnk1a1 conditional knockout mouse model. While murine cells are resistant to the effects of IMiDs, murine Ba/F3 cells overexpressing human CRBN (hCRBN), but not murine CRBN, degraded CSNK1A1 in response to lenalidomide. To examine the effect of Csnk1a1 haploinsufficiency on lenalidomide sensitivity, we isolated hematopoietic stem and progenitor cells from Csnk1a1+/- and Csnk1a1+/+ mice and transduced them with a retroviral vector expressing hCRBN. When treated with lenalidmide, Csnk1a1+/- cells expressing hCRBN were depleted over time relative to wild-type controls. The enhanced sensitivity of Csnk1a1+/- cells to lenalidomide was associated with induction of p21 and was rescued by heterozygous deletion of p53, demonstrating a critical downstream role for p53 consistent with clinical observations that TP53 mutations confer lenalidomide resistance. In aggregate, these studies demonstrate that lenalidomide induces the ubiquitination and consequent degradation of CSNK1A1 by the CRBN-CRL4 E3 ubiquitin ligase. del(5q) cells have only one copy of CSNK1A1, so they are selectively depleted over wild-type cells, explaining lenalidomide’s clinical efficacy in del(5q) MDS. Although the idea that heterozygous deletions could be cancer vulnerabilities was first proposed 20 years ago, lenalidomide provides the first example of an FDA-approved and clinically effective drug that derives its therapeutic window from specifically targeting a haploinsufficient gene. Disclosures Ebert: Celgene: Research Funding; Genoptix: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 1892-1892
    Abstract: The 5q-syndrome is a subtype of myelodysplastic syndrome (MDS) with a defined clinical phenotype associated with heterozygous deletion of Chromosome 5q. The RPS14 gene was identified as a critical gene for the erythroid phenotype of the 5q- syndrome using an RNA interference screen. We generated a murine model for conditional, heterozygous inactivation of Rps14 in the bone marrow to investigate the biological basis of del(5q) MDS. To explore the role of Rps14 on hematopoietic stem cell (HSC) function and erythroid differentiation, we generated a mouse model in which Rps14 exons 2-4 are flanked by loxP sites. Following crosses to Mx1Cre transgenic mice, we induced Rps14 excision in hematopoietic cells by poly(I:C). Two weeks after induction of the gene excision, mice developed significantly reduced hemoglobin and red blood cell counts with a significantly higher MCV compared to Mx1Cre+ controls. Bone marrow analysis confirmed an erythroid differentiation defect specifically at the transition from the CD71+Ter119+ (RII, basophilic erythroblasts/early polychromatophilic erythroblasts) to the CD71 intermediate/lowTer119+ (RIII/IV, poly/orthochromatophilic erythroblasts, enucleated erythrocytes) population, accompanied by significant up-regulation of p21 in the RIII population. Histopathology of spleens demonstrated compensatory extramedullar erythropoiesis. The bone marrow was normocellular with a significant increase in hypolobulated megakaryocytes correlating with high platelet counts and dysplastic platelets in the peripheral blood, reflecting the pathognomonic megakaryocyte phenotype in del(5q) MDS. At 50 weeks of age, Rps14-/+Mx1Cre+ developed a more severe macrocytic anemia in the peripheral blood. We thus tested whether a more severe erythroid phenotype could be induced by treatment with the hemolytic agent phenylhydrazine (PH; 2x single dose 25mg/kg body weight, s.c.). In response to PH treatment, Rps14 haploinsufficient mice developed a more severe anemia than control mice, had a delayed reticulocyte response, and a differentiation defect again specifically at the transition from RII to RIII/IV accompanied by a compensatory increase in the RI (CD71+Ter119-) pro-erythroblast/early basophilic population. Megakaryocyte-erythrocyte progenitors were increased, and pre-CFU-E and CFU-E numbers were normal. To further elucidate the mechanisms by which haploinsufficiency of Rps14 causes ineffective erythropoiesis, we analyzed cell cycle, p53 and apoptosis. We found a significant induction of p53 specifically in the RI population and a dramatic increase of apoptotic cells in RIII, suggesting that increased apoptosis accounts for the erythroid failure. We therefore tested if genetic inactivation of p53 rescues the erythroid phenotype. In Rps14-/+p53-/+Mx1Cre+ mice the erythroid differentiation defect was restored and mice had a comparable response to PH as Mx1Cre+ controls. In PH dose escalation experiments (35mg/kg), Rps14 haploinsufficient mice died from the severe anemia and delayed reticulocyte response, while compound p53 loss rescued the erythroid failure. Accordingly, forced erythroid differentiation in vitro was significantly impaired in Rps14 haploinsufficient hematopoietic stem and progenitor cells. We measured protein synthesis by O-propargyl (OP)-puromycin incorporation. Rps14 haploinsufficient cells had a significantly reduced protein synthesis in CD71low cells (late erythroblasts) that could not be fully restored by p53 inactivation although the protein synthesis in p53 heterozygote cells alone was significantly higher. The decreased protein synthesis in Rps14-/+p53-/-Mx1Cre+ compound cells might also account for the decreased stem cell expansion in repopulation assays compared to cells with only p53 loss. Our data provide in vivo evidence that Rps14 haploinsufficiency contributes to the erythroid differentiation defect in del(5q) MDS by reduced protein synthesis and p53 induction in late-stage erythroblasts. This murine model recapitulates the erythroid und megakaryocytic phenotype of the 5q-sydrome and provides a model for understanding the underlying mechanisms in the pathogenesis of ribosomal-mediated erythroid failure in del(5q) MDS. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 124, No. 21 ( 2014-12-06), p. 828-828
    Abstract: Recurrent, heterozygous, somatic mutations in components of the mRNA spliceosome complex were recently identified in over 60% of myelodysplastic syndrome (MDS) patients. Splicing factor mutations are thought to be founding mutations in MDS based on their allele fraction at diagnosis. Splicing factor 3b Subunit 1 (SF3B1) is the most frequently mutated splicing factor in MDS. SF3B1 mutations are highly associated (70 – 85% of cases) with refractory anemia with ring sideroblasts (RARS), a morphologic subtype of MDS characterized by the presence of erythroid precursors with perinuclear iron-laden mitochondria in the bone marrow. The pathophysiological role of SF3B1 mutations in MDS has yet to be elucidated. To explore the biology of SF3B1 mutations, we generated a heterozygous conditional knock-in mouse model of the most common SF3B1 mutation, K700E. Heterozygous conditional knock-in of Sf3b1K700E leads to a progressive macrocytic anemia, with normal absolute neutrophil and platelet counts. Over the course of 15 months, mutant mice developed a statistically significant macrocytic anemia (hemoglobin of 11.4 g/dL vs. 14 g/dL, p = 0.004; MCV of 63.1 fL vs. 58.4 fL, p = 0.008) associated with elevated plasma erythropoietin levels (257.5 pg/mL vs. 101 pg/mL, p = 0.0016). Analysis of hematopoietic stem and progenitor cells at 12 and 65 weeks after induction showed a similar percentage of stem (LT-HSC, ST-HSC, MPP, LSK) and progenitor (LK, CMP, GMP, MEP, pre CFU-E) cells in Sf3b1K700E and wild-type animals. Histopathologic analysis revealed no significant difference in spleen weights, but increased erythroid islands in the red pulp of mutant animal spleens; suggestive of ineffective erythroid maturation. Sf3b1K700E animals have a normocellular bone marrow with rare ring sideroblasts. No ring sideroblasts were identified in wild-type controls. No overt hematological malignancies were identified during the observation period, however two mutant animals succumbed to significant anemia (2 of 11, 18%) compared to zero deaths in the wild-type controls. To further characterize the erythroid-specific phenotype observed in Sf3b1K700E mice, mutant and wild-type animals were treated with phenylhydrazine, a drug that induces intravascular hemolysis. Sf3b1K700E mice had a more rapid onset of anemia and a higher reticulocytosis during count recovery compared to wild-type controls. Analysis of the bone marrow and spleens was notable for a higher percentage of immature erythroid precursors (R2/basophilic erythroblasts) and a lower percentage of more mature erythroid precursors (R4/orthochromatophilic erythroblasts) in mutant animals, consistent with impaired erythroid maturation. An in vitro erythroid differentiation assay using purified ckit+ progenitor cells from Sf3b1K700E mice yielded significantly fewer erythroblasts (p = 0.0226) when compared to cells from wild type mice due to a statistically significant increase in the percentage of mutant cells in G0 (p=0.018). Similarly, noncompetitive transplantation assays highlighted the cell intrinsic nature of these erythroid-specific findings, as mutant cells did not show a defect in repopulating recipients, however Sf3b1K700E recipients developed a progressive macrocytic anemia. Competitive transplantation assays demonstrated a competitive disadvantage in Sf3b1K700E hematopoietic stem cells. Engraftment was lower in Sf3b1K700E compared to wild-type recipients 4 weeks (33.9% vs. 54.4%, p = 0.002) and 16 weeks (29% vs. 62.4%, p = 0.0013) after transplantation. These findings are consistent with the fact that RARS patients have a lower risk of progression to acute myeloid leukemia compared with other MDS subtypes. Taken together, our results demonstrate that heterozygous mutations in Sf3b1 lead to aberrant erythroid maturation and ineffective hematopoiesis in mice. These findings are consistent with the clinical picture seen in RARS patients. The results from the competitive transplantation studies may be consistent with the more favorable prognosis seen in patients with RARS, as our data suggest that additional genetic or epigenetic alterations must be acquired in SF3B1K700E cells to facilitate the development of clonal dominance. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2014
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 633-633
    Abstract: Background: Philadelphia-negative myeloproliferative neoplasms (MPNs) are a group of clonal stem-cell disorders that are associated with an elevated risk for thrombosis. The reason for this association is incompletely understood. While elevated white blood cell (WBC) count is a risk factor for thrombosis in some models, the pathogenic pathways linking WBC abnormalities to thrombosis in MPNs are not clear. Neutrophil extracellular traps (NETs) are networks of extracellular neutrophil DNA, histones and serine proteases that contain and kill pathogens. There is a growing body of evidence linking NETs to thrombosis in various disease states, including cancer (Demers et al, PNAS 2012). We explored the contribution of NETs to the pro-thrombotic phenotype of MPNs. Methods: NET formation was assessed in neutrophils isolated from patients with MPNs and age-matched controls by using previously published immunofluorescence (IF) methods. c-KIT enriched marrow cells from Vav-Cre/Jak2V617F Knock-In (KI) mice were grafted into lethally irradiated wild-type (WT) recipients leading to constitutive heterozygous expression of the mutation in hematopoietic cells. Inferior vena cava (IVC) stenosis model was used to assess thrombotic tendency in mice. Mice were treated with ruxolitinib by oral gavage at a dose of 90 mg/kg BID for 3 days prior to thrombosis and NETosis experiments. NET formation was stimulated by ionomycin (4 µM). Results: Neutrophils from patients with MPNs (n=14) demonstrated significantly higher NET formation as compared to those from age-matched controls (n=10; p=0.003). This was true across specific MPN diagnoses and driver mutations (JAK2, CALR, MPL). Ex-vivo treatment of neutrophils with ruxolitinib (at 300nM for 2.5 hours) resulted in abrogation of NETosis as assessed by IF studies and was comparable to the effect achieved with the addition of compounds known to inhibit NET formation such as specific PAD4 and NADPH inhibitors; no difference was observed in Annexin V-mediated apoptosis between ruxolitinib treated and untreated neutrophils suggesting that ruxolitinib effect was not confounded by alternative apoptosis pathways. We next evaluated NETosis and its effect on thrombosis in MPN mouse models driven by Jak2 V617F. Neutrophils isolated from Vav-Cre/Jak2V617F demonstrated increased NET production ex-vivo as compared to WT littermate controls. Vav-Cre/Jak2V617F KI mice were grafted into lethally irradiated WT and assessed for their prothrombotic phenotype. VavCre/Jak2V617F KI demonstrated significantly higher thrombus formation at 2 hours using the IVC stenosis model (45% versus 0% for Jak2V617F KI (n=11) and Jak2WT (n=8), respectively; p=0.04 by Fisher's exact test). This was associated with significantly higher levels of free dsDNA in the plasma of KI stenosis mice as compared to WT stenosis controls (p=0.03 by Mann-Whitney). Furthermore, IHC and IF studies of lung tissue demonstrated that Vav-Cre/Jak2V617F KI have widespread thrombosis as compared to controls and IF studies demonstrated higher content of citrullinated histone H3 in the lung suggesting increased NETosis at that site. Treatment of Vav-Cre/Jak2V617F KI mice with ruxolitinib significantly abrogated thrombus formation (45% versus 0% for untreated (n=11) and treated (n=8) mice, respectively; p=0.04 by Fisher's exact test). We noted that expression of PAD4, an essential driver of NETosis, is elevated in MPN patients (Rampal Blood 2014). We found that PAD4 content was higher in protein lysates of neutrophils isolated from MPN patients as compared to controls. Moreover, abnormal nuclear localization was observed in patients. These observations may support a role for PAD4 in the excess NETosis observed in MPNs. Conclusion: We found that neutrophils from MPN patients and Jak2 V617F KI mice are sensitized to NET formation that may be mediated by increased PAD4 expression and nuclear localization. In mice, the increased ex-vivo NET formation is associated with an increased thrombosis rate and an abundance of NET related products in thrombus and tissue. Treatment with ruxolitinib abrogates NET formation in humans and significantly reduces thrombus formation in MPN mice models. These findings provide a pathogenic link between the genetic drivers of MPNs and thrombosis in these diseases. Pharmacologic inhibition of JAK-STAT pathway to reduce NETosis and thrombosis should be further investigated. Disclosures DeAngelo: Novartis: Consultancy; Ariad: Consultancy; Celgene: Consultancy; Baxter: Consultancy; Amgen: Consultancy; Incyte: Consultancy; Pfizer: Consultancy.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature, Springer Science and Business Media LLC, Vol. 523, No. 7559 ( 2015-7), p. 183-188
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...