GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 243-243
    Abstract: Introduction The multistep progression of multiple myeloma from a normal plasma cell to a system with the features of invasive cancer provides a unique opportunity to understand the co-evolution of the malignant clone within its microenvironment. Understanding these changes is becoming increasingly important as we attempt to design early intervention strategies and to precisely leverage emerging immunotherapeutic modalities to prevent and treat disease progression. In this work, we used mass cytometry (CyTOF) to generate a high-resolution map of the BM microenvironment and how it changes during the transition from health through pre-malignancy to disease. This approach allows us to both understand microenvironmental patterns that correlate with rapid disease progression as well as to generate new hypotheses about permissive and protective immune-phenotypes that might reveal novel immunologic drug targets. Methods To understand the immunologic characteristics of monoclonal gammopathy of undetermined significance (MGUS), smoldering multiple myeloma (SMM), newly diagnosed multiple myeloma (NDMM) and relapsed-refractory multiple myeloma (RRMM), we profiled BM aspirates from 79 patients using mass cytometry by time of flight (CyTOF). Furthermore, we compared the BM compartment of pre-malignant, malignant, and relapsed disease states to the BM of healthy donors using a 37-marker pan-immune panel. In this panel, we used antibodies against several immune lineages, tumor antigens, and functional surface markers, including co-stimulatory and co-inhibitory receptors. Cell clusters defined by Citrus analysis of CyTOF data were combined into an evolutionarily optimized decision tree by evtree to identify cluster interactions that strongly partition patient samples. Results During MGUS, when the tumor plasma cells are 〈 10% of BM, there is little evidence of immune dysregulation; the immune compartment of MGUS patients contains normal numbers of innate and adaptive populations. In SMM, there is considerably more heterogeneity, with patients both resembling MGUS/healthy individuals and those that had changes to their immune microenvironment more consistent with newly diagnosed patients. These features include the loss of specific CD4 T cell and B cell subsets (FDR 〈 0.1). The loss of CD4 was the most pronounced in the central memory and effector populations. This reduction in CD4 T cells is important because it diminishes help for CD8 T cell-mediated killing and immune cell maturation. Among B cell subsets, there was a loss in both mature and memory B cells. In comparison of SMM and NDMM samples, there was a clear progression from samples resembling healthy (normal B and CD4 subsets), to loss of only B cell subsets, and finally, loss of both B cell and CD4 subsets as samples diverged from healthy controls (Figure 1). In addition, a supervised machine learning analysis (evtree) identified CD4 effector memory abundance as the top node for partitioning samples into two distinct subtypes based on all available CyTOF markers across the myeloma continuum, with the high and low CD4 effector memory subtypes further subdivided by pre-B/immature B cell abundance (p=0.01), supporting these two cell types as being robust discriminators of the immune microenvironment as disease evolves. Between NDMM and RRMM samples, we observed heterogeneous loss in B cell subsets, including memory and naïve B cells. Interestingly, in RRMM we observed a strong increase in an unidentified population of CD45- cells that are quiescent (FDR 〈 0.1), which may be stem or stromal cells. Available RNA sequencing from matching samples may reveal the lineage and function of these cells that increase during relapse. Conclusions Immune dysregulation is thought to be a major contributor to the progression and outcome of patients with MGUS, SMM, and MM. Using CyTOF, we have begun to benchmark the content of the immune microenvironment across the myeloma continuum. Based on this cross-sectional analysis we hypothesize that it is important to further interrogate whether the losses in the CD4 memory and effector populations we described correlate with outcomes after therapy with either CAR T or T cell engager trials that are currently ongoing, and whether reconstituting these cell types could provide a meaningful treatment strategy. Disclosures Young: Celgene Corporation: Employment, Equity Ownership. Danziger:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Gockley:Celgene Corporation: Employment. McConnell:Celgene Corporation: Employment. Reiss:Celgene Corporation: Employment, Equity Ownership. Copeland:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Foy:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Dervan:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Janssen: Research Funding; Celgene: Consultancy, Honoraria, Research Funding; Bristol-Myers Squibb: Consultancy, Honoraria.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 132, No. Supplement 1 ( 2018-11-29), p. 1882-1882
    Abstract: Introduction The multiple myeloma (MM) tumor microenvironment (TME) strongly influences patient outcomes as evidenced by the success of immunomodulatory therapies. To develop precision immunotherapeutic approaches, it is essential to identify and enumerate TME cell types and understand their dynamics. Methods We estimated the population of immune and other non-tumor cell types during the course of MM treatment at a single institution using gene expression of paired CD138-selected bone marrow aspirates and whole bone marrow (WBM) core biopsies from 867 samples of 436 newly diagnosed MM patients collected at 5 time points: pre-treatment (N=354), post-induction (N=245), post-transplant (N=83), post-consolidation (N=51), and post-maintenance (N=134). Expression profiles from the aspirates were used to infer the transcriptome contribution of immune and stromal cells in the WBM array data. Unsupervised clustering of these non-tumor gene expression profiles across all time points was performed using the R package ConsensusClusterPlus with Bayesian Information Criterion (BIC) to select the number of clusters. Individual cell types in these TMEs were estimated using the DCQ algorithm and a gene expression signature matrix based on the published LM22 leukocyte matrix (Newman et al., 2015) augmented with 5 bone marrow- and myeloma-specific cell types. Results Our deconvolution approach accurately estimated percent tumor cells in the paired samples compared to estimates from microscopy and flow cytometry (PCC = 0.63, RMSE = 9.99%). TME clusters built on gene expression data from all 867 samples resulted in 5 unsupervised clusters covering 91% of samples. While the fraction of patients in each cluster changed during treatment, no new TME clusters emerged as treatment progressed. These clusters were associated with progression free survival (PFS) (p-Val = 0.020) and overall survival (OS) (p-Val = 0.067) when measured in pre-transplant samples. The most striking outcomes were represented by Cluster 5 (N = 106) characterized by a low innate to adaptive cell ratio and shortened patient survival (Figure 1, 2). This cluster had worse outcomes than others (estimated mean PFS = 58 months compared to 71+ months for other clusters, p-Val = 0.002; estimate mean OS = 105 months compared with 113+ months for other clusters, p-Val = 0.040). Compared to other immune clusters, the adaptive-skewed TME of Cluster 5 is characterized by low granulocyte populations and high antigen-presenting, CD8 T, and B cell populations. As might be expected, this cluster was also significantly enriched for ISS3 and GEP70 high risk patients, as well as Del1p, Del1q, t12;14, and t14:16. Importantly, this TME persisted even when the induction therapy significantly reduced the tumor load (Table 1). At post-induction, outcomes for the 69 / 245 patients in Cluster 5 remain significantly worse (estimate mean PFS = 56 months compared to 71+ months for other clusters, p-Val = 0.004; estimate mean OS = 100 months compared to 121+ months for other clusters, p-Val = 0.002). The analysis of on-treatment samples showed that the number of patients in Cluster 5 decreases from 30% before treatment to 12% after transplant, and of the 63 patients for whom we have both pre-treatment and post-transplant samples, 18/20 of the Cluster 5 patients moved into other immune clusters; 13 into Cluster 4. The non-5 clusters (with better PFS and OS overall) had higher amounts of granulocytes and lower amounts of CD8 T cells. Some clusters (1 and 4) had increased natural killer (NK) cells and decreased dendritic cells, while other clusters (2 and 3) had increased adipocytes and increases in M2 macrophages (Cluster 2) or NK cells (Cluster 3). Taken together, the gain of granulocytes and adipocytes was associated with improved outcome, while increases in the adaptive immune compartment was associated with poorer outcome. Conclusions We identified distinct clusters of patient TMEs from bulk transcriptome profiles by computationally estimating the CD138- fraction of TMEs. Our findings identified differential immune and stromal compositions in patient clusters with opposing clinical outcomes and tracked membership in those clusters during treatment. Adding this layer of TME to the analysis of myeloma patient baseline and on-treatment samples enables us to formulate biological hypotheses and may eventually guide therapeutic interventions to improve outcomes for patients. Disclosures Danziger: Celgene Corporation: Employment, Equity Ownership. McConnell:Celgene Corporation: Employment. Gockley:Celgene Corporation: Employment. Young:Celgene Corporation: Employment, Equity Ownership. Schmitz:Celgene Corporation: Employment, Equity Ownership. Reiss:Celgene Corporation: Employment, Equity Ownership. Davies:MMRF: Honoraria; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Consultancy, Membership on an entity's Board of Directors or advisory committees; TRM Oncology: Honoraria; Abbvie: Consultancy; ASH: Honoraria; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria. Copeland:Celgene Corporation: Employment, Equity Ownership. Fox:Celgene Corporation: Employment, Equity Ownership. Fitch:Celgene Corporation: Employment, Equity Ownership. Newhall:Celgene Corporation: Employment, Equity Ownership. Barlogie:Celgene: Consultancy, Research Funding; Dana Farber Cancer Institute: Other: travel stipend; Multiple Myeloma Research Foundation: Other: travel stipend; International Workshop on Waldenström's Macroglobulinemia: Other: travel stipend; Millenium: Consultancy, Research Funding; European School of Haematology- International Conference on Multiple Myeloma: Other: travel stipend; ComtecMed- World Congress on Controversies in Hematology: Other: travel stipend; Myeloma Health, LLC: Patents & Royalties: : Co-inventor of patents and patent applications related to use of GEP in cancer medicine licensed to Myeloma Health, LLC. Trotter:Celgene Research SL (Spain), part of Celgene Corporation: Employment, Equity Ownership. Hershberg:Celgene Corporation: Employment, Equity Ownership, Patents & Royalties. Dervan:Celgene Corporation: Employment, Equity Ownership. Ratushny:Celgene Corporation: Employment, Equity Ownership. Morgan:Takeda: Consultancy, Honoraria; Bristol-Myers Squibb: Consultancy, Honoraria; Celgene: Consultancy, Honoraria, Research Funding; Janssen: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2018
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Leukemia, Springer Science and Business Media LLC, Vol. 34, No. 7 ( 2020-07), p. 1866-1874
    Abstract: While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of patients does not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have been developed, but each model uses a different combination of genes and often involves assaying many genes making them difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models. This effort lead to more robust predictors and found that incorporating specific demographic and clinical features improved gene expression-based models of high risk. Furthermore, post-challenge analysis identified a novel expression-based risk marker, PHF19 , which has recently been found to have an important biological role in multiple myeloma. Lastly, we show that a simple four feature predictor composed of age, ISS, and expression of PHF19 and MMSET performs similarly to more complex models with many more gene expression features included.
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2020
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: PLOS Medicine, Public Library of Science (PLoS), Vol. 17, No. 11 ( 2020-11-4), p. e1003323-
    Type of Medium: Online Resource
    ISSN: 1549-1676
    Language: English
    Publisher: Public Library of Science (PLoS)
    Publication Date: 2020
    detail.hit.zdb_id: 2164823-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 77, No. 13_Supplement ( 2017-07-01), p. 4725-4725
    Abstract: Introduction: Multiple myeloma (MM) is a cancer of the plasma cells in the bone marrow, and its clinical course depends on a complex interplay of clinical traits and molecular characteristics of the plasma cells. Since risk-adapted therapy is becoming standard of care, there is an urgent need for a precise risk stratification model to assist in therapeutic decision-making. While progress has been made, there remains a significant opportunity to improve patient stratification to optimize treatment and to develop new therapies for high-risk patients. To accelerate the development and evaluation of such risk models in MM, we formed a DREAM Challenge, a crowd-sourced competition that engages large cross-disciplinary teams of experts to address complex problems in biomedicine. Methods and Data: In collaboration with Multiple Myeloma Genome Project (MGP), clinical variables, patient outcomes, genetic, and gene expression data from thousands of samples were curated and harmonized from multiple public and private studies. In preparation for the challenge, a team of data scientists was assembled to evaluate this data, benchmark public high-risk models, and assess established prediction metrics with regard to progression-free survival (PFS) and overall survival (OS), the clinical endpoints of the challenge. Docker containers will be used to validate submitted models on private data that would otherwise not be available and to facilitate the transition of the best performing predictive signature to a clinical application. The MM DREAM challenge is accessible at: synapse.org. Results: The international staging system (ISS) for myeloma was used as a baseline classifier for high-risk patients (PFS & lt; 18mo). We evaluated published high-risk signatures - UAMS-5, UAMS-17, UAMS-70, and EMC92 - as benchmarks and observed that they consistently outperformed the baseline ISS predictor. High-risk prediction scores from these models were moderately correlated, suggesting published classifiers capture non-overlapping determinants of risk. Development of de novo classifiers by our team integrating clinical and molecular data highlighted opportunities for model refinement and supports rationalization of a crowd-sourced challenge to advance the field. Conclusion: Preliminary analysis of the challenge data suggests there is an opportunity to significantly improve risk stratification models in MM. In addition to the robust benchmarking of existing classifiers, we anticipate new, more accurate models will be proposed through a MM challenge given the scale of the combined data sets. We hope to uncover novel clinical and molecular traits that may yield insight into the pathology of MM and provide direction for follow-up studies. Importantly, this challenge will illustrate the advantages of leveraging public data and crowdsourcing to address therapeutically relevant questions in oncology. In addition, this challenge establishes a community resource for future research and benchmarking of novel classifiers. Citation Format: Michael Mason, Michael Amatangelo, Daniel Auclair, Doug Bassett, Hongyue Dai, Andrew Dervan, Erin Flynt, Hartmut Goldschmidt, Dirk Hose, Konstantinos Mavrommatis, Gareth Morgan, Nikhil Munshi, Alex Ratushny, Dan Rozelle, Mehmet Samur, Frank Schmitz, Ken Shain, Anjan Thakurta, Fadi Towfic, Matthew Trotter, Brian Walker, Brian S. White, Thomas Yu, Justin Guinney. Multiple Myeloma DREAM Challenge: A crowd-sourced challenge to improve identification of high-risk patients [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 4725. doi:10.1158/1538-7445.AM2017-4725
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2017
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...