GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2018
    In:  Nephrology Dialysis Transplantation Vol. 33, No. suppl_1 ( 2018-05-01), p. i81-i81
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 33, No. suppl_1 ( 2018-05-01), p. i81-i81
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1465709-0
    detail.hit.zdb_id: 90594-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Nephrology Dialysis Transplantation, Oxford University Press (OUP), Vol. 36, No. Supplement_1 ( 2021-05-29)
    Abstract: Tryptophan catabolism is carried out by the enzymes of the kynurenine pathway leading to the de novo synthesis of NAD and the production of a series of bioactive metabolites. Kynurenine 3-Monooxigenase (KMO) is a key component of this pathway and it is one of the enzymes responsible for the degradation of kynurenine. The kynurenine metabolites participate in various cellular processes, so systemic dysregulation of tryptophan metabolism, marked by increased kynurenine in the circulation, has been linked to the onset and severity of a wide range of pathologies, such as chronic kidney disease and associated co-morbidities. Since the enzymes of the kynurenine pathway are expressed in the kidney and the metabolites are cleared in the urine, we aim to describe the effects of changes in tryptophan catabolism on glomerular cells, both in vitro and in vivo. Method Modulation of KMO expression or enzymatic function was performed in a transgenic zebrafish line that allows for the monitoring of a fluorescently labelled protein in the circulation as an indicator for proteinuria. Morpholinos targeting three enzymes of the kynurenine pathway were injected into fish embryos, leading to a knockdown of Afmid, Kmo and Kynu. Additionally, dechorionated larvae were treated with a Kmo inhibitor administered via the embryo rearing media, starting at 48hpf. In all cases at 96hpf, circulating fluorescent protein levels were determined, larval phenotype was scored based on the severity of the edema, and samples were collected for metabolite analysis or fixed and prepared for imaging. Since the kynurenine pathway results in the de novo production of NAD, and the enzyme KMO is located in the outer mitochondrial membrane, cultured murine parietal epithelial cells as well as immortalized human and mouse podocytes were incubated with a KMO inhibitor. Changes in NAD+ and NADH, as well as alterations in the mitochondrial membrane polarization were assessed. Additionally, the oxygen consumption rate was measured in order to determine if KMO inhibition leads to changes in the bioenergetics parameters of glomerular cells in vitro. Results The modification of Afmid, Kmo and Kynu expression levels by morpholino mediated knockdown or inhibition of Kmo lead to the accumulation of upstream kynurenine metabolites in the treated larvae, as was confirmed by mass spectrometry analysis. Following our previous results, alteration of the kynurenine pathway led to the development of yolk sac edema, pericardial effusion and loss of protein from the circulation, accompanied by an enlargement of the Bowman’s space and changes in nephrin expression in the glomerulus of the treated larvae. Under cell culture conditions, KMO inhibition in immortalized podocytes led to a reduction in cell size and focal adhesion proteins (podocalyxin). The NAD+/NADH ratio as well as mitochondrial membrane polarity were also altered. Additionally, changes in spare respiratory capacity, coupling efficiency and proton leak suggest that alterations in the kynurenine pathway might impair the cell’s ability to adapt its bioenergetic profile in response to stress. Conclusion Taken together these results suggest that the modulation of tryptophan catabolism through the kynurenine pathway may contribute to maintaining the structural integrity of glomerular cytoskeleton as well a flexible energy metabolism in podocytes. Moreover, the results from our in vivo model also suggest that imbalances in kynurenine metabolites might ultimately impact the function of the glomerular filtration barrier.
    Type of Medium: Online Resource
    ISSN: 0931-0509 , 1460-2385
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1465709-0
    detail.hit.zdb_id: 90594-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Biology Open, The Company of Biologists
    Abstract: Different glomerular diseases that affect podocyte homeostasis can clinically present as nephrotic syndrome with massive proteinuria, hypoalbuminemia, hyperlipidemia and edema. Up to now no drugs that specifically target the actin cytoskeleton of podocytes are on the market and model systems for library screenings to develop anti-proteinuric drugs are of high interest. We developed a standardized proteinuria model in zebrafish using puromycin aminonucleoside (PAN) via treatment in the fish water to allow for further drug testing to develop anti-proteinuric drugs for the treatment of glomerular diseases. We noticed that fish that carry the nacre-mutation show a significantly higher susceptibility for the disruption of the glomerular filtration barrier following PAN treatment, which results in a more pronounced proteinuria phenotype. Nacre zebrafish inherit a mutation yielding a truncated version of microphthalmia-associated transcription factor/ melanogenesis associated transcription factor (mitf). We hypothesized that the nacre mutation may lead to reduced formin expression and defects in cytoskeletal rearrangement. Based on the observations in zebrafish, we carried out a PAN treatment on cultured human podocytes after knockdown with MITF siRNA causing a rearrangement of the actin cytoskeleton.
    Type of Medium: Online Resource
    ISSN: 2046-6390
    Language: English
    Publisher: The Company of Biologists
    Publication Date: 2019
    detail.hit.zdb_id: 2632264-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: BioMed Research International, Wiley, Vol. 2019 ( 2019-07-22), p. 1-11
    Abstract: The 6-O-endosulfatases (sulfs) are important enzymatic components involved in the regulation of heparan sulfate by altering the sulfatation pattern. Specifically in the kidney, sulfs have been implicated in the glomerular podocyte-endothelial cell crosstalk and in the preservation of the glomerular filtration barrier (GFB) in different mouse models. Since it has been shown that in zebrafish larvae, Sulf1, Sulf2a, and Sulf2b are expressed in the pronephric kidney we set out to establish if a reduction in sulf expression leads to GFB dysfunction. Here, we show that a reduced sulf expression following morpholino (MO) induced knockdown in zebrafish larvae promotes damage to the GFB leading to renal plasma protein loss from the circulation. Moreover, a combined knockdown of Sulf1, Sulf2a, and Sulf2b is associated with severe morphologic changes including narrowing of the fenestration between glomerular endothelial cells as well as thickening of the glomerular basement membrane and podocyte foot process effacement, suggesting that glomerular damage is an underlying cause of the circulatory protein loss observed after MO injection. Additionally, we show that a decrease in sulf expression reduces the bioavailability of VegfA in the glomerulus of the pronephros, which may contribute to the structural changes observed in the glomeruli of morphant fish. Furthermore, consistent with previous results, knockdown of the sulfs is associated with arteriovenous malformations in particular in the tail region of the larvae. Overall, taken together our results suggest that 6-O-endosulfatases are important in the preservation of GFB integrity and a reduction in their expression levels induces phenotypic changes that are indicative of renal protein loss.
    Type of Medium: Online Resource
    ISSN: 2314-6133 , 2314-6141
    Language: English
    Publisher: Wiley
    Publication Date: 2019
    detail.hit.zdb_id: 2698540-8
    detail.hit.zdb_id: 2705584-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Diabetes, American Diabetes Association, Vol. 65, No. 12 ( 2016-12-01), p. 3667-3679
    Abstract: Diabetic nephropathy (DN) is the major cause of end-stage renal disease worldwide. Podocytes are important for glomerular filtration barrier function and maintenance of size selectivity in protein filtration in the kidney. Podocyte damage is the basis of many glomerular diseases characterized by loss of interdigitating foot processes and decreased expression of components of the slit diaphragm. Nephrin, a podocyte-specific protein, is the main component of the slit diaphragm. Loss of nephrin is observed in human and rodent models of diabetic kidney disease. The long isoform of CIN85 (RukL) is a binding partner of nephrin that mediates nephrin endocytosis via ubiquitination in podocytes. Here we demonstrate that the loss of nephrin expression and the onset of proteinuria in diabetic mice correlate with an increased accumulation of ubiquitinated proteins and expression of CIN85/RukL in podocytes. CIN85/RukL deficiency preserved nephrin surface expression on the slit diaphragm and reduced proteinuria in diabetic mice, whereas overexpression of CIN85 in zebrafish induced severe edema and disruption of the filtration barrier. Thus, CIN85/RukL is involved in endocytosis of nephrin in podocytes under diabetic conditions, causing podocyte depletion and promoting proteinuria. CIN85/RukL expression therefore shows potential to be a novel target for antiproteinuric therapy in diabetes.
    Type of Medium: Online Resource
    ISSN: 0012-1797 , 1939-327X
    Language: English
    Publisher: American Diabetes Association
    Publication Date: 2016
    detail.hit.zdb_id: 80085-5
    detail.hit.zdb_id: 1501252-9
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Cellular Physiology and Biochemistry, S. Karger AG, Vol. 40, No. 5 ( 2016), p. 819-830
    Abstract: Background: TGF-β is known as an important stress factor of podocytes in glomerular diseases. Apart from activation of direct pro-apoptotic pathways we wanted to analyze micro-RNA (miRs) driven regulation of components involved in the integrity of the glomerular filtration barrier induced by TGF-β. Since miR-143-3p (miR-143) is described as a TGF-β inducible miR in other cell types, we examined this specific miR and its ability to induce glomerular pathology. Methods: We analyzed miR-143 expression in cultured human podocytes after stimulation with TGF-β. We also microinjected zebrafish eggs with a miR-143 mimic or with morpholinos specific for its targets syndecan and versican and compared phenotype and proteinuria development. Results: We detected a time dependent, TGF-β inducible expression of miR-143 in human podocytes. Targets of miR-143 relevant in glomerular biology are syndecans and versican, which are known components of the glycocalyx. We found that syndecan 1 and 4 were predominantly expressed in podocytes while syndecan 3 was largely expressed in glomerular endothelial cells. Versican could be detected in both cell types. After injection of a miR-143 mimic in zebrafish larvae, syndecan 3, 4 and versican were significantly downregulated. Moreover, miR-143 overexpression or versican knockdown by morpholino caused loss of plasma proteins, edema, podocyte effacement and endothelial damage. In contrast, knockdown of syndecan 3 and syndecan 4 had no effects on glomerular filtration barrier. Conclusion: Expression of versican and syndecan isoforms is indispensable for proper barrier function. Podocyte-derived miR-143 is a mediator for paracrine and autocrine cross talk between podocytes and glomerular endothelial cells and can alter expression of glomerular glycocalyx proteins.
    Type of Medium: Online Resource
    ISSN: 1015-8987 , 1421-9778
    Language: English
    Publisher: S. Karger AG
    Publication Date: 2016
    detail.hit.zdb_id: 1482056-0
    detail.hit.zdb_id: 1067572-3
    SSG: 12
    SSG: 15,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...