GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • The American Association of Immunologists  (4)
  • Sato, Shinichi  (4)
  • 1
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2009
    In:  The Journal of Immunology Vol. 182, No. 1_Supplement ( 2009-04-01), p. 94.22-94.22
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 182, No. 1_Supplement ( 2009-04-01), p. 94.22-94.22
    Abstract: Inducible costimulator (ICOS) is a CD28 homolog with an expression restricted to T cells, and its only interaction partner, ICOS ligand (ICOSL), is highly expressed on B cells, macrophage, and dendritic cells. To assess the role of ICOS-ICOSL signaling pathway in tissue fibrosis, bleomycin-induced lung and skin fibrosis model was examined in mice deficient for ICOS and/or ICOSL. Daily subcutaneous injection of bleomycin induced fibrosis in the lungs and skin. The loss of ICOS improved the survival rate as a result of ameliorated inflammatory cell infiltration, collagen deposition, and proinflammatory cytokine expression. By contrast, the deficiency of ICOSL or both ICOS and ICOSL reduced the survival rate in consequence of aggravated inflammation and tissue fibrosis. Interestingly, ICOSL expression on macrophage and B cell was ~300% elevated in ICOS-deficient mice compared with wild type mice during this process. Thus, ICOSL expression levels inversely associated with the severity of this mouse model. These findings suggest that ICOSL expression on antigen presenting cells has regulatory roles independent of ICOS-ICOSL pathway for the development of bleomycin-induced tissue fibrosis.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2009
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    The American Association of Immunologists ; 2000
    In:  The Journal of Immunology Vol. 165, No. 11 ( 2000-12-01), p. 6635-6643
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 165, No. 11 ( 2000-12-01), p. 6635-6643
    Abstract: Signaling thresholds influence the balance between humoral immunity and autoimmunity. Cell surface CD19 regulates intrinsic and Ag receptor-induced B lymphocyte signaling thresholds, and transgenic mice that overexpress CD19 by 3-fold generate spontaneous autoantibodies in a genetic background not associated with autoimmunity. To quantify the extent that genetically determined differences in expression of a single cell surface molecule can influence autoantibody production, we have assessed autoimmunity in a C57BL/6-transgenic mouse line with subtle 15–29% increases in CD19 cell surface expression (CD19 transgenic). Antinuclear Abs, especially anti-spindle pole Abs, rheumatoid factor, and autoantibodies for ssDNA, dsDNA, and histone were produced in these transgenic mice, but not littermate controls. This demonstrates that small changes in CD19 expression can induce autoantibody production. Remarkably, similar changes in CD19 expression were found on B cells from patients with systemic sclerosis, a multisystem disorder of connective tissue with autoantibody production. CD19 density on blood B cells from systemic sclerosis patients was significantly (∼20%) higher compared with normal individuals, whereas CD20, CD22, and CD40 expression were normal. These results suggest that modest changes in the expression or function of regulatory molecules such as CD19 may shift the balance between tolerance and immunity to autoimmunity. Thereby autoimmune disease may result from a collection of subtle multigenic alterations that could include incremental density changes in cell surface signaling molecules.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2000
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 179, No. 1 ( 2007-07-01), p. 698-707
    Abstract: The tight-skin (TSK/+) mouse, a genetic model for systemic sclerosis, develops cutaneous fibrosis. Although a fibrillin 1 gene mutation and immunological abnormalities have been demonstrated, the roles of adhesion molecules have not been investigated. To directly assess roles of adhesion molecules in skin fibrosis, TSK/+ mice lacking L-selectin and/or ICAM-1 were generated. The deficiency of ICAM-1, but not L-selectin, significantly suppressed (∼48%) the development of skin sclerosis in TSK/+ mice. Similarly, ICAM-1 antisense oligonucleotides inhibited skin fibrosis in TSK/+ mice. Although T cell infiltration was modest into the skin of TSK/+ mice, ICAM-1 deficiency down-regulated this migration, which is consistent with the established roles of endothelial ICAM-1 in leukocyte infiltration. In addition, altered phenotype or function of skin fibroblasts was remarkable and dependent on ICAM-1 expression in TSK/+ mice. ICAM-1 expression was augmented on TSK/+ dermal fibroblasts stimulated with IL-4. Although growth or collagen synthesis of TSK/+ fibroblasts cultured with IL-4 was up-regulated, it was suppressed by the loss or blocking of ICAM-1. Collagen expression was dependent on the strain of fibroblasts, but not on the strain of cocultured T cells. Thus, our findings indicate that ICAM-1 expression contributes to the development of skin fibrosis in TSK/+ mice, especially via ICAM-1 expressed on skin fibroblasts.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2007
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Immunology, The American Association of Immunologists, Vol. 185, No. 4 ( 2010-08-15), p. 2502-2515
    Abstract: Mice s.c. injected with bleomycin, an experimental model for human systemic sclerosis, develop skin and lung fibrosis, which is mediated by inflammatory cell infiltration. This process is highly regulated by multiple adhesion molecules and does not require Ag sensitization. To assess the role of adhesion molecules in this pathogenetic process, bleomycin-induced fibrosis was examined in mice lacking adhesion molecules. L-selectin and/or ICAM-1 deficiency inhibited skin and lung fibrosis with decreased Th2 and Th17 cytokines and increased Th1 cytokines. In contrast, P-selectin deficiency, E-selectin deficiency with or without P-selectin blockade, or P-selectin glycoprotein ligand 1 (PSGL-1) deficiency augmented the fibrosis in parallel with increased Th2 and Th17 cytokines and decreased Th1 cytokines. Furthermore, loss of L-selectin and/or ICAM-1 reduced Th2 and Th17 cell numbers in bronchoalveolar lavage fluid, whereas loss of P-selectin, E-selectin, or PSGL-1 reduced Th1 cell numbers. Moreover, Th1 cells exhibited higher PSGL-1 expression and lower expression of LFA-1, a ligand for ICAM-1, whereas Th2 and Th17 cells showed higher LFA-1 and lower PSGL-1 expression. This study suggests that L-selectin and ICAM-1 regulate Th2 and Th17 cell accumulation into the skin and lung, leading to the development of fibrosis, and that P-selectin, E-selectin, and PSGL-1 regulate Th1 cell infiltration, resulting in the inhibition of fibrosis.
    Type of Medium: Online Resource
    ISSN: 0022-1767 , 1550-6606
    RVK:
    RVK:
    Language: English
    Publisher: The American Association of Immunologists
    Publication Date: 2010
    detail.hit.zdb_id: 1475085-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...