GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Copernicus GmbH  (2)
  • Sarwar, G.  (2)
Material
Publisher
  • Copernicus GmbH  (2)
Language
Years
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 11, No. 1 ( 2011-01-14), p. 275-291
    Abstract: Abstract. Regional and global chemical transport models underpredict NOx (NO + NO2) in the upper troposphere where it is a precursor to the greenhouse gas ozone. The NOx bias has been shown in model evaluations using aircraft data (Singh et al., 2007) and total column NO2 (molecules cm−2) from satellite observations (Napelenok et al., 2008). The causes of NOx underpredictions have yet to be fully understood due to the interconnected nature of simulated emission, transport, and chemistry processes. Recent observation-based studies, in the upper troposphere, identify chemical rate coefficients as a potential source of error (Olson et al., 2006; Ren et al., 2008). Since typical chemistry evaluation techniques are not available for upper tropospheric conditions, this study develops an evaluation platform from in situ observations, stochastic convection, and deterministic chemistry. We derive a stochastic convection model and optimize it using two simulated datasets of time since convection, one based on meteorology, and the other on chemistry. The chemistry surrogate for time since convection is calculated using seven different chemical mechanisms, all of which predict shorter time since convection than our meteorological analysis. We evaluate chemical simulations by inter-comparison and by pairing results with observations based on NOx:HNO3, a photochemical aging indicator. Inter-comparison reveals individual chemical mechanism biases and recommended updates. Evaluation against observations shows that all chemical mechanisms overpredict NOx removal relative to long-lived methanol and carbon monoxide. All chemical mechanisms underpredict observed NOx by at least 30%, and further evaluation is necessary to refine simulation sensitivities to initial conditions and chemical rate uncertainties.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2011
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 13, No. 19 ( 2013-10-02), p. 9695-9712
    Abstract: Abstract. We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RACM2 enhances the domain-wide monthly mean hydroxyl radical concentrations by 46% and nitric acid by 26%. However, it reduces hydrogen peroxide by 2%, peroxyacetic acid by 94%, methyl hydrogen peroxide by 19%, peroxyacetyl nitrate by 40%, and organic nitrate by 41%. RACM2 enhances ozone compared to CB05TU at all ambient levels. Although it exhibited greater overestimates at lower observed concentrations, it displayed an improved performance at higher observed concentrations. The RACM2 ozone predictions are also supported by increased ozone production efficiency that agrees better with observations. Compared to CB05TU, RACM2 enhances the domain-wide monthly mean sulfate by 10%, nitrate by 6%, ammonium by 10%, anthropogenic secondary organic aerosols by 42%, biogenic secondary organic aerosols by 5%, and in-cloud secondary organic aerosols by 7%. Increased inorganic and organic aerosols with RACM2 agree better with observed data. Any air pollution control strategies developed using the two mechanisms do not differ appreciably.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2013
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...