GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Sanderson, Christopher M.  (7)
  • Smith, Geoffrey L.  (7)
Material
Person/Organisation
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Microbiology Society ; 2001
    In:  Journal of General Virology Vol. 82, No. 5 ( 2001-05-01), p. 1199-1213
    In: Journal of General Virology, Microbiology Society, Vol. 82, No. 5 ( 2001-05-01), p. 1199-1213
    Abstract: A mutational analysis of the vaccinia virus (VV) B5R protein is presented. This protein is related to the regulators of complement activation (RCA) superfamily, has four short consensus repeats (SCRs) that are typical of this superfamily and is present on extracellular enveloped virus (EEV) particles. Here we have constructed VV mutants in which the cytoplasmic tail (CT) of the B5R protein is progressively truncated, and domains of the B5R protein [the SCR (short consensus repeat) domains, the transmembrane anchor region or the CT] are substituted by corresponding domains from the VV haemagglutinin (HA), another EEV protein. Analysis of these mutant viruses showed that loss of the B5R CT did not affect the formation of intracellular enveloped virus (IEV), actin tails, EEV or virus plaque size. However, if the SCR domains of the B5R protein were replaced by the corresponding region of the HA, the virus plaque size was diminished, the formation of actin tails was decreased severely and the titre of infectious EEV released from cells was reduced approximately 25-fold compared to wild-type virus and 5-fold compared to a virus lacking the entire B5R gene. Thus the linkage of HA to the B5R transmembrane and CT is deleterious for the formation and release of EEV and for cell-to-cell virus spread. In contrast, deletion or substitution of the B5R CT did not affect virus replication, although the amount of cell surface B5R was reduced compared to control.
    Type of Medium: Online Resource
    ISSN: 0022-1317 , 1465-2099
    RVK:
    RVK:
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2001
    detail.hit.zdb_id: 219316-4
    detail.hit.zdb_id: 2007065-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Virology Vol. 72, No. 12 ( 1998-12), p. 9924-9933
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 12 ( 1998-12), p. 9924-9933
    Abstract: Vaccinia virus (VV) induces two forms of cell motility: cell migration, which is dependent on the expression of early genes, and the formation of cellular projections, which requires the expression of late genes. The need for viral gene expression prior to cell motility suggests that VV proteins may affect how infected cells interact with the extracellular matrix. To address this, we have analyzed changes in cell-matrix adhesion after infection of BS-C-1 cells with VV. Whereas uninfected cells round up and detach from the culture flask in the presence of EGTA, infected cells remain attached to the culture flask with a stellate morphology. Ca 2+ -independent cell-matrix adhesion was evident by 10 h postinfection, after the onset of cell motility but before the formation of virus-induced cellular projections. Progression to Ca 2+ -independent adhesion required the expression of late viral genes but not the formation of intracellular enveloped virus particles or intracellular actin tails. Analyses of specific matrix proteins identified vitronectin and fibronectin as optimal ligands for Ca 2+ -independent adhesion and the formation of cellular projections. Adhesion to fibronectin was mediated via RGD motifs alone and was not inhibited by 500 μg of heparin/ml. Kistrin, a disintegrin which binds preferentially to the αvβ3 (vitronectin/fibronectin) receptor inhibited the formation of cellular projections without disrupting preformed matrix interactions. Finally, we show that Ca 2+ -independent cell-matrix adhesion is a dynamic process which mediates changes in the morphology of VV-infected cells and uninfected cells which exhibit a transformed phenotype.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    detail.hit.zdb_id: 80174-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 1999
    In:  Expert Reviews in Molecular Medicine Vol. 1, No. 10 ( 1999-05-04), p. 1-16
    In: Expert Reviews in Molecular Medicine, Cambridge University Press (CUP), Vol. 1, No. 10 ( 1999-05-04), p. 1-16
    Abstract: Viruses replicate inside host cells, where they use host biochemical and structural components to facilitate the production of new virus particles. As a consequence of co-evolution with their hosts, viruses have acquired host genes and genetic mutations that confer dominance over normal cell function. Research on virus–cell interactions has focused on the identification of mechanisms of virus dominance in order to develop therapeutic strategies for preventing productive infection. Although such research remains an essential part of molecular virology, viruses are also important genetic tools that can be used to analyse cell function. Because virus genomes contain genetic information, some of which was derived from host cells, it is possible that the analyses of virus–host interactions might lead to the identification of functionally dominant virus genes and novel eukaryotic counterparts. In this article, we have described how transforming and non-transforming viruses can control cell motility (cell migration or membrane projection), and explained how the analysis of virus cytopathic effects (CPEs) led to the identification of a novel family of cellular genes that regulate diverse aspects of cell motility.
    Type of Medium: Online Resource
    ISSN: 1462-3994
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 1999
    detail.hit.zdb_id: 2035515-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 3 ( 1998-03), p. 2429-2438
    Abstract: Vaccinia virus produces two morphologically distinct forms of infectious virus, termed intracellular mature virus (IMV) and extracellular enveloped virus (EEV). EEV is important for virus dissemination within a host and has different surface proteins which bind to cell receptors different from those used by IMV. Six genes are known to encode EEV-specific proteins. One of these, B5R, encodes a 42-kDa glycoprotein with amino acid similarity to members of the complement control protein superfamily and contains four copies of a 50- to 70-amino-acid repeat called the short consensus repeat (SCR). Deletion of B5R causes a small-plaque phenotype, a 10-fold reduction in EEV formation, and virus attenuation in vivo. In this study, we inserted mutated versions of the B5R gene lacking different combinations of the SCRs into a virus deletion mutant lacking the B5R gene. The resultant viruses each formed small plaques only slightly larger than those of the deletion mutant; however, the virus containing only SCR 1 formed plaques slightly larger than those of viruses with SCRs 1 and 2 or SCRs 1, 2, and 3. All of these viruses produced approximately 50-fold more infectious EEV than wild-type virus and formed comet-shaped plaques under liquid overlay. Despite producing more EEV, the mutant viruses were unable to induce the polymerization of actin on intracellular virus particles. The implications of these results for our understanding of EEV formation, release, and infectivity are discussed.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    detail.hit.zdb_id: 80174-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Society for Microbiology ; 1998
    In:  Journal of Virology Vol. 72, No. 2 ( 1998-02), p. 1235-1243
    In: Journal of Virology, American Society for Microbiology, Vol. 72, No. 2 ( 1998-02), p. 1235-1243
    Abstract: Many viruses induce profound changes in cell metabolism and function. Here we show that vaccinia virus induces two distinct forms of cell movement. Virus-induced cell migration was demonstrated by an in vitro wound healing assay in which infected cells migrated independently into the wound area while uninfected cells remained relatively static. Time-lapse microscopy showed that the maximal rate of migration occurred between 9 and 12 h postinfection. Virus-induced cell migration was inhibited by preinactivation of viral particles with trioxsalen and UV light or by the addition of cycloheximide but not by addition of cytosine arabinoside or rifampin. The expression of early viral genes is therefore necessary and sufficient to induce cell migration. Following migration, infected cells developed projections up to 160 μm in length which had growth-cone-like structures and were frequently branched. Time-lapse video microscopy showed that these projections were formed by extension and condensation of lamellipodia from the cell body. Formation of extensions was dependent on late gene expression but not the production of intracellular enveloped (IEV) particles. The requirements for virus-induced cell migration and for the formation of extensions therefore differ from each other and are distinct from the polymerization of actin tails on IEV particles. These data show that poxviruses encode genes which control different aspects of cell motility and thus represent a useful model system to study and dissect cell movement.
    Type of Medium: Online Resource
    ISSN: 0022-538X , 1098-5514
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 1998
    detail.hit.zdb_id: 1495529-5
    detail.hit.zdb_id: 80174-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Virology, Elsevier BV, Vol. 265, No. 1 ( 1999-12), p. 131-146
    Type of Medium: Online Resource
    ISSN: 0042-6822
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 1999
    detail.hit.zdb_id: 200425-2
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Microbiology Society ; 2000
    In:  Microbiology Vol. 81, No. 1 ( 2000-01-01), p. 47-58
    In: Microbiology, Microbiology Society, Vol. 81, No. 1 ( 2000-01-01), p. 47-58
    Abstract: The vaccinia virus (VV) A27L gene encodes a 14 kDa protein that is required for the formation of intracellular enveloped virus (IEV) and, consequently, normal sized plaques. Data presented here show that A27L plays an additional role in VV assembly. When cells were infected with the VV WR32-7/Ind 14K, under conditions that repress A27L expression, transport of intracellular mature virus (IMV) from virus factories was inhibited and some IMV was found in aberrant association with virus crescents. In contrast, other VV mutants (vΔB5R and vΔF13L) that are defective in IEV formation produce IMV particles that are transported out of virus factories. This indicated a specific role for A27L in IMV transport. Induction of A27L expression at 10 h post-infection promoted the dispersal of clustered IMV particles, but only when microtubules were intact. Formation of IEV particles was also impaired when cells were infected with WR32-7/14K, a VV strain expressing a mutated form of the A27L protein; however, this mutation did not inhibit intracellular transport of IMV particles. Collectively, these data define two novel aspects of VV morphogenesis. Firstly, A27L is required for both IMV transport and the process of envelopment that leads to IEV formation. Secondly, movement of IMV particles between the virus factory and the site of IEV formation is microtubule-dependent.
    Type of Medium: Online Resource
    ISSN: 1350-0872 , 1465-2080
    Language: English
    Publisher: Microbiology Society
    Publication Date: 2000
    detail.hit.zdb_id: 2008736-6
    detail.hit.zdb_id: 1180712-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...