GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 94, No. 7 ( 2015-7), p. 1221-1223
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 94, No. 8 ( 2015-8), p. 1431-1433
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2015
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Annals of Hematology, Springer Science and Business Media LLC, Vol. 95, No. 5 ( 2016-4), p. 829-830
    Type of Medium: Online Resource
    ISSN: 0939-5555 , 1432-0584
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 1458429-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Leukemia, Springer Science and Business Media LLC, Vol. 37, No. 4 ( 2023-04), p. 910-913
    Type of Medium: Online Resource
    ISSN: 0887-6924 , 1476-5551
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2008023-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 432-432
    Abstract: [Background] Nestin-expressing cells (NeC) have been characterized as one of many types of bone marrow (BM) microenvironmental cells, including endothelial cells, osteoblasts, CXCL12-abundant reticular (CAR) cells, etc. Recent studies have gradually provided information about anatomy and functions of each of these cells. Nevertheless, subcellular signaling and transcriptional regulations in individual miciroenvironmental cells have poorly been demonstrated. On a different line of studies, it has been suggested that NOTCH signaling in BM microenvironmental cells affects hematopoiesis; despite this, information is limited whether NOTCH signaling plays a role in NeC. It is of note that nestin was originally identified in neural stem cells (NSC), that NOTCH signaling is known to play a pivotal role in the NSC, and that the BM NeC could be derived from neuroectoderm. This potential linkage urged us to investigate whether and how downregulation of NOTCH signaling in BM NeC affects hematopoiesis. [Method] Mice with an rbpj-flox allele were crossed with those with a CreERT2/GFP (Green Fluorescent Protein) transgene under the nestin promoter. At 8-12 weeks, tamoxifen was intraperitoneally injected for 4-12 weeks to delete the rbpj gene only in NeC (rbpj cKO mice). In this experimental system, GFP is expected to be expressed as a surrogate marker for the rbpj gene deletion, by the deletion of stop codon inserted at 5' to the cDNA of GFP. Then, transplantation assays were performed using rbpj-null BM cells as a donor to reconstitute hematopoiesis in the wild-type mice, or using rbpj-null mice as recipients to see reconstitution of hematopoiesis from wild-type BM cells. The effect of splenectomy was investigated in the untransplanted and transplanted conditions. The littermate rbpjnull/wt orrbpjwt/wtmice were used as controls. [Results] GFP was detected in 0.1-0.5% of flow cytometry (FCM)-sorted CD45(-) cells only after tamoxifen injection. Deletion of rbpj was specifically confirmed in GFP-positive BM and spleen cells. Tamoxifen induced mild splenomegaly in rbpj cKO mice compared with littermate control mice. Enlarged spleen showed preserved follicular architecture but increased CD71(+)Ter119(+) mature erythroid cells in the red pulp. In contrast, BM of rbpj cKO mice bearing mild splenomegaly demonstrated marked decrease in the CD71(+)Ter119(+) mature erythroid cells without obvious anemia. There was a substantial animal-to-animal variation in the phenotypes; however, the strength of phenotypes was correlated with the frequency of GFP-positive cells in the BM, suggesting that the phenotypic variation was a result of the efficiency of rbpj gene deletion. We hypothesized that the rbpj cKO mice would develop anemia if spenectomized, because extramedullary erythropoiesis in spleen might compensate the defective BM erythropoiesis. However, tamoxifen did not cause significant anemia in splenectomized rbpj cKO mice. In these mice, reduction of the CD71(+)Ter119(+) mature erythroid cells in BM was significantly milder than nonsplenectomized mice. In transplantation analysis, the recipient rbpj cKO mice transplanted with BM cells from wild-type mice showed a reduction in CD71(+)Ter119(+) mature erythroid cells and mild splenomegaly, as were seen in rbpj cKO mice without transplantation. The phenotypes were again erased by the splenectomy. The recipient wild-type mice transplanted with BM cells from rbpjcKO mice did not show any phenotypes. [Discussion] Rbpj cKO in NeC induced impaired erythroid differentiation in BM together with mild splenomegaly. We confirmed that these phenotypes were caused by rbpj cKO in BM NeC by transplantation experiments. Surprisingly, such BM erythropoiesis impairment was reversed by splenectomy. This unexpected finding uncovered the presence of a previously unidentified balance controller between BM and spleen erythropoiesis. Hematopoietic stem cell-autonomous NOTCH signaling has been shown to be dispensable for adult murine hematopoiesis; however, NOTCH signaling in BM-NeC is responsible for control of balance of erythropoiesis at the BM and the spleen. Disclosures Obara: Alexion Pharmaceuticals: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 2843-2843
    Abstract: Background: Studies on germline variants responsible for cancer predisposition provide an important clue to the understanding of genetic basis of cancer and also help better prediction and management of relevant cancers. As for myeloid neoplasms, only a handful of genes, including RUNX1, CEBPA, GATA2, ETV6, and ANKRD26, have been implicated in early onset familial acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), although they are rarely seen in sporadic cases. Recently, using whole exome sequencing of familial AML/MDS, we have reported novel AML/MDS predisposing gene, DDX41, an encoding dead-box helicase gene. Conspicuously, the onset of AML/MDS was over 60 in most of the affected cases, raising a possibility that the genetic predisposition might be obscured and many cases could be diagnosed with sporadic AML/MDS. In this study, we investigated germline DDX41 mutations in sporadic cases with AML/MDS and the incidence and mutation types were compared between Asian and Western patients. Patients and Methods: We performed targeted sequencing of DDX41 in patients from Asian (N = 239) cohort of AML/MDS, where the origin of the detected variations was determined by using matched germline DNA. The result was compared to those obtained from the Western cohort (N = 1,034) in terms of frequency and type of mutation. The effect size of the mutations was estimated by calculating odds ratios of each variant for AML/MDS development using the data for DDX41 variants in Asian and Western population from the ExAC (Exome Aggregation Consortium) database (http://exac.broadinstitute.org) as controls. Results: Germline and somatic DDX41 mutations were found in 12 (5.0%) and 10 (4.7%) of sporadic cases with AML/MDS from the Asian cohort, as compared to 8 (0.8%) and 10 (1.0%) from the Western cohort. All the patients with germline variants were aged over 40 year-old with a median of 68.5, confirming the late onset of the disease also in the sporadic cases with germline variants. Eight of the 12 germline variants (67%) in the Asian cohort were accompanied by an additional somatic mutation, as compared to 2 of the 8 (25%) in the Western cohort. Biallelic involvement was demonstrated in selected cases (N = 2). In total, 8 and 3 germline variants were observed in the Asian and the Western cohorts, respectively, without no common variants between both cohorts, of which the predominant variants included p.A500fs (n=5; 42%) and p.E7X (n=2; 17%) in the Asian cohort and p.F140fs (n=6; 75%) in Western cohort. In contrast, a prominent hotspot mutation involving a highly conserved amino-acid within the helicase domain (p.R525H) was commonly observed in both cohorts, accounting for 55% of all the somatic mutations. These germline variants as a whole showed significant enrichment in AML/MDS cases compared to the respective control population (OR 〉 171, 95% confidence interval (CI): 51-730 for the Asian variants and more than 21.7, 95%CI: 8.4-50 for the Western variants), although the enrichment of individual variants showed substantial variations, suggesting different effect size among these variants: the odds ratio was 19.5 (p 〈 0.001) for p.F140fs, and 92.4 (p 〈 0.001) for p.A500fs. p.E7X was detected in 2 out of 239 cases with MDS/AML, whereas not in the control Asian population. Conclusion: We demonstrated frequent germline variants of DDX41 among sporadic cases with AML/MDS from different ethnic populations. Having common ancestral origins in different ethnic populations, these alleles are found in the general population at very low frequencies ( 〈 1 in 4000), accounting for the largest congenital risk for the development of sporadic AML/MDS therein (3-5% of all sporadic AML/MDS). The onset was typically over 40 years of age and frequently accompanied by an additional somatic mutation most likely in the unaffected allele, showing a prominent hotspot at p.R525. The germline variants seem to be dominant and caused premature truncation of the protein, leading to loss-of-function in most cases, whereas somatic mutations were typically missense variants not totally abrogating protein function, suggesting the importance of less than haploinsufficiency but more than null function for leukemogenesis. At the meeting, an extended result from more than 1000 Asian cases will be presented. Disclosures Kiyoi: Kyowa-Hakko Kirin Co., Ltd.: Consultancy, Research Funding; Pfizer Inc.: Research Funding; Novartis Pharma K.k.: Research Funding; Mochida Pharmaceutical Co., Ltd.: Research Funding; Taisho Toyama Pharmaceutical Co., Ltd.: Research Funding; Eisai Co., Ltd.: Research Funding; Zenyaku Kogyo Company, Ltd.: Research Funding; FUJIFILM RI Pharma Co.,Ltd.: Patents & Royalties, Research Funding; Chugai Pharmaceutical Co., LTD.: Research Funding; Fujifilm Corporation.: Patents & Royalties, Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Bristol-Myers Squibb.: Research Funding; Alexion Pharmaceuticals.: Research Funding; Sumitomo Dainippon Pharma Co., Ltd.: Research Funding; Takeda Pharmaceutical Co., Ltd.: Research Funding; Yakult Honsha Co., Ltd.: Research Funding; Astellas Pharma Inc.: Consultancy, Research Funding; Teijin Ltd.: Research Funding; Japan Blood Products Organization.: Research Funding; Nippon Shinyaku Co.,Ltd.: Research Funding; MSD K.K.: Research Funding. Miyazaki:Shin-bio: Honoraria; Sumitomo Dainippon: Honoraria; Chugai: Honoraria, Research Funding; Celgene Japan: Honoraria; Kyowa-Kirin: Honoraria, Research Funding. Naoe:Kyowa Hakko Kirin Co., Ltd.: Patents & Royalties, Research Funding; Celgene K.K.: Research Funding; FUJIFILM Corporation: Patents & Royalties, Research Funding; Astellas Pharma Inc.: Research Funding; Toyama Chemical CO., LTD.: Research Funding; Nippon Boehringer Ingelheim Co., Ltd.: Research Funding; Otsuka Pharmaceutical Co., Ltd.: Research Funding; Pfizer Inc.: Research Funding; Chugai Pharmaceutical Co., Ltd.: Patents & Royalties. Usuki:Boehringer Ingelheim: Other: personal fees, Research Funding; Shionogi: Other: personal fees; Fujimoto Pharmaceutical: Research Funding; Takeda Pharmaceutical: Research Funding; SymBio Pharmaceutical: Other: personal fees, Research Funding; Eisai: Research Funding; Otsuka Pharmaceutical: Research Funding; Kyowa Hakko Kirin: Other: personal fees, Research Funding; Shire: Research Funding; Nippon Shinyaku: Other: personal fees, Research Funding; Novartis: Other: personal fees, Research Funding; Sanofi: Other: personal fees, Research Funding; MSD: Other: personal fees, Research Funding; Celgene: Other: personal fees, Research Funding; Sumitomo Dainippon Pharma: Other: personal fees, Research Funding; Taiho Pharmaceutical: Other: personal fees, Research Funding; Fuji Film RI Pharma: Other: personal fees; Chugai Pharmaceutical: Other: personal fees; GlaxoSmithKline: Other: personal fees, Research Funding; Bristol-Myers Squibb: Other; Astellas: Research Funding. Miyawaki:Astellas Pharma Inc.: Consultancy, Other: personal fees; Ohtsuka Pharma Co, LTD.: Other: Safety Data Committee.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Blood, American Society of Hematology, Vol. 120, No. 21 ( 2012-11-16), p. 1204-1204
    Abstract: Abstract 1204 Background. Hematopoietic progenitor cells are the progeny of hematopoietic stem cells (HSC) that coordinate the production of precise number of mature blood cells of diverse functional lineages. Megakaryocytes (Meg) are mapped at the downstream of bilineage progenitors for erythroid and megakaryocyte (MEP) in the most widely accepted scenarios, although different notions have also been suggested. Thrombopoietin (TPO) is thought to be the master cytokine for megakaryopoiesis. In mice lacking cMpl, the receptor for TPO, production of platelets and Meg is severely impaired. However, Meg are known to be still present in the bone marrow of these mice. These findings suggested that TPO independent signaling for Meg differentiation would exist. Purpose. To clarify the differentiation pathway of the Meg lineage, we focused on GPIb (CD42)-V-IX complex, expression of which has not been characterized in any progenitor cells whereas it is well known to be expressed on mature Meg and platelets. We also investigated how TPO-cMpl signaling would affect at MEP or pure megakaryocyte progenitor (MKP) stage using the cMpl deficient mice. Results and Discussion. GPIb alpha (CD42b) was expressed on 3–6 % of a mouse bone marrow population characterized as common myeloid progenitors (CMP), i.e., Lin-c-Kit+Sca1-CD34+CD16/32low cells. The GPIb alpha+ CMP (thereafter designated 34-alpha) population also expresses CD9, SLAM1, and CD41. These 34-alpha cells showed a restricted differentiation capacity to the mature Meg in in vitro culture. By intravenously infusing 34-alpha cells derived from CAG promoter-driven GFP-expressing mice into sublethally irradiated syngenic mice, GFP-expressing platelets were generated in vivo. Thus, we designate the 34-alpha cells as 34-alpha MKP. Gene expression analysis also supported that 34-alpha MKP has a restricted capacity of megakaryopoiesis. In vitro colony-forming assay and short-term liquid culture assay suggested that they are not derived from MEP but from the SLAM1+Flt3-c-Kit+Sca1+Lin- population, which highly contain HSC. When experimental thrombocytopenia was induced by injecting 5-fluorouracil into mice, the frequency of 34-alpha MKP was rapidly increased compared to that of MEP. These data imply a distinct pathway of Meg differentiation, which originates at the proximity of HSC. We next investigated whether generation of 34-alpha MKP and MEP is differently impaired in cMpl-deficient mice. The frequency of MEP was only mildly reduced. In contrast, 34-alpha MKP were much severely reduced. Notably, in vitro Meg differentiation was markedly impaired from both MEP and 34-alpha MKP derived from cMpl-deficient mice. These data suggested that discordance between Meg and platelet production is caused by the different dependence on TPO-cMpl signaling between the pathways generating MEP and 34-alpha MKP from HSC. We also found that Hes1, a transcription factor that is the best characterized effector functioning downstream of the Notch signaling pathway, is highly expressed in 34-alpha MKP. Conversely, Meg differentiation was abrogated by retroviral transduction of a dominant-negative mutant of Hes1. Taken together, our data imply the presence of two distinct Meg differentiation pathways from HSC and further suggest that the dependency of TPO-cMpl signaling is different in these pathways and Notch-Hes signaling plays an additional role in them. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2012
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 128, No. 22 ( 2016-12-02), p. 3887-3887
    Abstract: Background: Nestin-expressing cells (NeC) have been characterized to consist of hematopoietic stem cell (HSC) niche in the mouse bone marrow (BM). Decreases of BM NeC have been reported in myeloproliferative neoplasms (MPN) in humans and in the mouse model of MPN. These lines of information further emphasize the importance of the NeC for the maintenance of normal hematopiesis. Nevertheless, NeC appear to be heterogenous; nestin is reported to be expressed in multiple types of BM stromal cells distinct from each other, with regard to the anatomical localization and the cell-surface antigen expression pattern. One type is reported to be localized adjacent to sinusoids and another type surrounding arterioles. A subset of endothelial cells also appears to be a candidate of NeC in the BM. It is thus critical to define the identities of distinct subsets of BM NeC. Furthermore, each subset of NeC needs to be studied in the human BM from normal subjects and those with BM diseases to understand pathophysiologic significance of NeC in patients. Myelodysplastic syndromes (MDS) are a clonal disease characterized by ineffective hematopoiesis and an increased risk of transformation into acute myeloid leukemia. In this disease, anormalities of BM microenvironment have been repeatedly reported; however, consensus in detail has not been reached. Purpose: To define the identities of distinct subsets of NeC in the BM from normal human subjects and to explore their abnormalities in MDS. Methods:Formalin-fixed paraffin-embedded BM biopsy samples from lymphoma patients without BM involvement (designated normal) and from MDS patients were immunostained with antibodies against six markers: nestin, CD34, laminin, α-smooth muscle actin (αSMA), glial fibrillary acidic protein (GFAP), and neurofilament heavy chain (NFH). Immunohistochemistry (IHC) and immunofluorescence (IF) staining were performed. The microscopic analysis of IHC-stained samples involved 10 randomly selected fields of view at 400× magnification, where the numbers of NeC and CD34-positive spindle-shaped cells were counted for quantitative analysis, as well as the association of these two types of cells was evaluated. IF samples were analyzed by a confocal laser scanning microscope using 10 randomly selected fields of view at 63× magnification. Then, nestin-, GFAP-, and NFH-stained areas were measured using the confocal LAS AF software for quantitative analysis. Results:NeC were found at multiple locations in distinct contexts in the normal human BM. A majority of NeC were present in association with the arterior/arteriolar structures. These artery/arteriole-associated NeC were distributed at each of the three layers; the intimal layer inside the laminine-stained basement membrane, the tunica media epressing αSMA, and the adventitial layer outside the αSMA-stained structure. The NeC located at the intimal layer expressed the highest level of nestin. The NeC were present in a close proximity with the CD34-expressing endothelial cells, although whether the endothelial cells co-expressed nestin and CD34 was unclear. The NeC at the other layers showed relatively lower levels of nestin expression. We identified NeC which did not associate with the vascular structures, albeit at a low frequency and with weak nestin staining in the normal human BM. In MDS BM, there was a significant increase in the NeC that were unassociated with the vascular structures. A portion of these increased NeC co-expressed GFAP. These cells potentially represented Schwann cells, because some of them surrounded the NFH-stained structure. Consistent with this, GFAP- and NFH-stained areas were increases in the MDS BM, together with the nestin-stained areas when measured by the confocal LAS AF software. Discussion: Multiple subsets of NeC were identified in the normal human BM as well as in the MDS BM. It is yet elusive whether each subset of NeC has a HSC niche function. In MDS BM, there was an increase in a distinct subset of NeC. The origin of these cells was elusive, but the Shwann cells normally present along with the arterial/arteriolar structures could be a candidate, because in the normal BM, a portion of GFAP-expressing cells along with the vascular structures expressed nestin. It should be elucidated whether the increased sympathetic nervous structure is involved in the pathophysiology of MDS. Disclosures Obara: Alexion Pharmaceuticals: Honoraria, Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2016
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Nature, Springer Science and Business Media LLC, Vol. 478, No. 7367 ( 2011-10), p. 64-69
    Type of Medium: Online Resource
    ISSN: 0028-0836 , 1476-4687
    RVK:
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2011
    detail.hit.zdb_id: 120714-3
    detail.hit.zdb_id: 1413423-8
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: International Journal of Hematology, Springer Science and Business Media LLC, Vol. 109, No. 3 ( 2019-3), p. 309-318
    Type of Medium: Online Resource
    ISSN: 0925-5710 , 1865-3774
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2028991-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...