GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (2)
  • Saito, Yasushi  (2)
Material
Publisher
  • Ovid Technologies (Wolters Kluwer Health)  (2)
Language
Years
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Ovid Technologies (Wolters Kluwer Health) ; 2004
    In:  Arteriosclerosis, Thrombosis, and Vascular Biology Vol. 24, No. 2 ( 2004-02), p. 276-281
    In: Arteriosclerosis, Thrombosis, and Vascular Biology, Ovid Technologies (Wolters Kluwer Health), Vol. 24, No. 2 ( 2004-02), p. 276-281
    Abstract: Objective— Osteopontin is upregulated in the diabetic vascular wall and in vascular smooth muscle cells cultured under high glucose concentration. In the present study, we analyzed the mechanism of high glucose-induced upregulation of osteopontin in cultured rat aortic smooth muscle cells. Methods and Results— We found that an inhibitor of Rho-associated protein kinase, Y-27632, suppressed osteopontin mRNA expression under high glucose concentration. Transfection of cells with a constitutive active Rho mutant, pSRα-myc-RhoDA, enhanced osteopontin mRNA expression. Furthermore, incubation of cells under high glucose concentration activated Rho, indicating that Rho/Rho kinase pathway mediates high-glucose–stimulated osteopontin expression. Treatment of cells with an inhibitor of protein kinase C, GF109203X, and azaserine, an inhibitor of the hexosamine pathway, suppressed high glucose-induced Rho activation. Glucosamine treatment was shown to activate Rho. Treatment of cells with an inhibitor of MEK1, PD98059, suppressed osteopontin mRNA expression under high glucose concentration. Incubation of cells under high glucose concentration activated ERK. Finally, transfection of cells with pSRα-myc-RhoDA also activated ERK. Conclusions— In conclusion, our present findings support a notion that Rho/Rho kinase pathway functions downstream of protein kinase C and the hexosamine pathways and upstream of ERK in mediating high-glucose–induced upregulation of osteopontin expression.
    Type of Medium: Online Resource
    ISSN: 1079-5642 , 1524-4636
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2004
    detail.hit.zdb_id: 1494427-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation Research, Ovid Technologies (Wolters Kluwer Health), Vol. 96, No. 8 ( 2005-04-29), p. 904-912
    Abstract: The role of transforming growth factor (TGF)-β and its signal in atherogenesis is not fully understood. Here, we examined mice lacking Smad3, a major downstream mediator of TGF-β, to clarify the precise role of Smad3-dependent signaling in vascular response to injury. Femoral arteries were injured in wild-type and Smad3-null (null) male mice on C57Bl/6 background. Histopathological evaluation of the arteries 1 to 3 weeks after the injury revealed significant enhancement of neointimal hyperplasia in null compared with wild-type mice. Transplantation of null bone marrow to wild-type mice did not enhance neointimal thickening, suggesting that vascular cells in situ play a major role in the response. Null intima contained more proliferating smooth muscle cells (SMC) with less amount of collagen compared with wild-type intima. TGF-β caused significant inhibition of cellular proliferation in wild-type aortic SMC, whereas the growth of null SMC was only weakly inhibited by TGF-β in vitro, indicating a crucial role of Smad3 in the growth inhibitory function. On the other hand, Smad3-deficiency did not attenuate chemotaxis of SMC toward TGF-β. TGF-β increased transcript level of α2 type I collagen and tissue inhibitor of metalloproteinases-1, and suppressed expression and activity of matrix metalloproteinases in wild-type SMC. However, these effects of TGF-β were diminished in null SMC. Our findings altogether show that the loss of Smad3 pathway causes enhanced neointimal hyperplasia on injury through modulation of growth and matrix regulation in vascular SMC. These results indicate a vasculoprotective role of endogenous Smad3 in response to injury.
    Type of Medium: Online Resource
    ISSN: 0009-7330 , 1524-4571
    RVK:
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2005
    detail.hit.zdb_id: 1467838-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...