GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Global Change Biology, Wiley, Vol. 18, No. 8 ( 2012-08), p. 2498-2508
    Abstract: Climatic effects in the ocean at the community level are poorly described, yet accurate predictions about ecosystem responses to changing environmental conditions rely on understanding biotic responses in a food‐web context to support knowledge about direct biotic responses to the physical environment. Here we conduct time‐series analyses with multivariate autoregressive ( MAR ) models of marine zooplankton abundance in the Northern California Current from 1996 to 2009 to determine the influence of climate variables on zooplankton community interactions. Autoregressive models showed different community interactions during warm vs. cool ocean climate conditions. Negative ecological interactions among zooplankton groups characterized the major warm phase during the time series, whereas during the major cool phase, ocean transport largely structured zooplankton communities. Local environmental conditions (sea temperature) and large‐scale climate indices (El Niño/Southern Oscillation) were associated with changes in zooplankton abundance across the full time series. Secondary environmental correlates of zooplankton abundance varied with ocean climate phase, with most support during the warm phase for upwelling as a covariate, and most support during the cool phase for salinity. Through simultaneous quantitation of community interactions and environmental covariates, we show that marine zooplankton community structure varies with climate, suggesting that predictions about ecosystem responses to future climate scenarios in the Northern California Current should include potential changes to the base of the pelagic food.
    Type of Medium: Online Resource
    ISSN: 1354-1013 , 1365-2486
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2012
    detail.hit.zdb_id: 2020313-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Ecosphere, Wiley, Vol. 7, No. 4 ( 2016-04)
    Abstract: Interannual variability in salmon ( Oncorhynchus spp.) production in the northeast Pacific is understood to be driven by oceanographic variability and bottom‐up processes affecting prey availability to juvenile salmon. Scyphozoan jellyfish have an important role in shaping the pathways of energy flow through pelagic food webs. While jellyfish obtain high production rates and biomasses as major consumers of zooplankton production, they have few predators and may divert plankton production away from higher trophic levels. Although jellyfish are planktivorous and juvenile coho ( O. kisutch ) and Chinook ( O. tshawytscha ) salmon are mainly piscivorous, they may be indirect competitors for plankton production. Ecosystem model simulations suggested that among all trophic interactions within the Pacific Northwest coastal food web, juvenile salmon are particularly sensitive to jellyfish blooms, and that salmon production will be suppressed in years of high summer jellyfish biomass. Pelagic surveys off Oregon and Washington (1999–2012) were used to examine the interannual relationship between salmon production and the dominant jellyfish species, the sea nettle Chrysaora fuscescens , off the Pacific Northwest coast. There was a significant, negative correlation between sea nettle biomass and the strength of adult coho and Chinook salmon returns to the Columbia River. Examination of spatial distributions across years showed a positive association between sea nettles and salmon. Within individual years, significant differences between the distribution of sea nettles and yearling coho and Chinook salmon generally occurred during cooler ocean summers, perhaps due to the greater expanse of optimal salmon habitat resulting from more upwelling. Whether the association is behavioral or a product of oceanographic processes, association enhances the opportunity for indirect competition. Examination of feeding incidence in September showed that salmon stomachs were less full at locations with higher sea nettle biomass.
    Type of Medium: Online Resource
    ISSN: 2150-8925 , 2150-8925
    Language: English
    Publisher: Wiley
    Publication Date: 2016
    detail.hit.zdb_id: 2572257-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: ICES Journal of Marine Science, Oxford University Press (OUP), Vol. 72, No. 8 ( 2015-10-01), p. 2301-2312
    Abstract: Fishery management production models tend to stress only the elements directly linked to fish (i.e. fish, fish food, and fish predators). Large coastal jellyfish are major consumers of plankton in heavily fished ecosystems; yet, they are frequently not included as model components. We explore the relationship between gulf menhaden (Brevoortia patronus) and the large scyphozoan jellyfish (Aurelia spp. and Chrysaora sp.), and provide an examination of trophic energy transfer pathways to higher trophic levels in the northern Gulf of Mexico. A trophic network model developed within the ECOPATH framework was transformed to an end-to-end model to map foodweb energy flows. Relative changes in functional group productivity to varying gulf menhaden consumption rates, jellyfish consumption rates, and forage fish (i.e. gulf menhaden, anchovies, and herrings) harvest rates were evaluated within a suite of static, alternative energy-demand scenarios using ECOTRAN techniques. Scenario analyses revealed forage fish harvest enhanced jellyfish productivity, which, in turn, depressed menhaden productivity. Modelled increases in forage fish harvest caused pronounced changes in ecosystem structure, affecting jellyfish, marine birds, piscivorous fish, and apex predators. Menhaden were found to be a more efficient and important energy transfer pathway to higher trophic levels compared with jellyfish. A simulated increase in jellyfish abundance caused the relative production of all model groups to decline. These outcomes suggest that jellyfish blooms and forage fish harvest have demonstrable effects on the structure of the northern Gulf of Mexico ecosystem.
    Type of Medium: Online Resource
    ISSN: 1095-9289 , 1054-3139
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2015
    detail.hit.zdb_id: 2463178-4
    detail.hit.zdb_id: 1468003-8
    detail.hit.zdb_id: 29056-7
    SSG: 12
    SSG: 21,3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Scientific Reports, Springer Science and Business Media LLC, Vol. 9, No. 1 ( 2019-02-28)
    Abstract: During the last 20 years, a series of studies has suggested trends of increasing jellyfish (Cnidaria and Ctenophora) biomass in several major ecosystems worldwide. Some of these systems have been heavily fished, causing a decline among their historically dominant small pelagic fish stocks, or have experienced environmental shifts favouring jellyfish proliferation. Apparent reduction in fish abundance alongside increasing jellyfish abundance has led to hypotheses suggesting that jellyfish in these areas could be replacing small planktivorous fish through resource competition and/or through predation on early life stages of fish. In this study, we test these hypotheses using extended and published data of jellyfish, small pelagic fish and crustacean zooplankton biomass from four major ecosystems within the period of 1960 to 2014: the Southeastern Bering Sea, the Black Sea, the Northern California Current and the Northern Benguela. Except for a negative association between jellyfish and crustacean zooplankton in the Black Sea, we found no evidence of jellyfish biomass being related to the biomass of small pelagic fish nor to a common crustacean zooplankton resource. Calculations of the energy requirements of small pelagic fish and jellyfish stocks in the most recent years suggest that fish predation on crustacean zooplankton is 2–30 times higher than jellyfish predation, depending on ecosystem. However, compared with available historical data in the Southeastern Bering Sea and the Black Sea, it is evident that jellyfish have increased their share of the common resource, and that jellyfish can account for up to 30% of the combined fish-jellyfish energy consumption. We conclude that the best available time-series data do not suggest that jellyfish are outcompeting, or have replaced, small pelagic fish on a regional scale in any of the four investigated ecosystems. However, further clarification of the role of jellyfish requires higher-resolution spatial, temporal and taxonomic sampling of the pelagic community.
    Type of Medium: Online Resource
    ISSN: 2045-2322
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2019
    detail.hit.zdb_id: 2615211-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Progress in Oceanography, Elsevier BV, Vol. 102 ( 2012-9), p. 19-41
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2012
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Progress in Oceanography, Elsevier BV, Vol. 164 ( 2018-05), p. 28-36
    Type of Medium: Online Resource
    ISSN: 0079-6611
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 1497436-8
    detail.hit.zdb_id: 4062-9
    SSG: 21,3
    SSG: 14
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...