GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2016
    In:  Nature Climate Change Vol. 6, No. 7 ( 2016-7), p. 701-705
    In: Nature Climate Change, Springer Science and Business Media LLC, Vol. 6, No. 7 ( 2016-7), p. 701-705
    Type of Medium: Online Resource
    ISSN: 1758-678X , 1758-6798
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2016
    detail.hit.zdb_id: 2603450-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 23 ( 2017-12), p. 9383-9398
    Abstract: The northern North Atlantic comprises a dynamically complex area with distinct topographic features, making it challenging to model oceanic features with global climate models. As climate models form the basis for assessment reports of future regional sea level rise, model evaluation is important. In this study, the representation of regional sea level in this area is evaluated in 18 climate models that contributed to phase 5 of the Coupled Model Intercomparison Project. Modeled regional dynamic height is compared to observations from an altimetry-based record over the period 1993–2012 in terms of mean dynamic topography, interannual variability, and linear trend patterns. As models are expected to reproduce the location and magnitude but not the timing of internal variability, the observations are compared to the full 150-yr historical simulations using 20-yr time slices. This approach allows one to examine modeled natural variability versus observed changes and to assess whether a forced signal is detectable over the 20-yr record or whether the observed changes can be explained by internal variability. The models perform well with respect to mean dynamic topography. However, model performances degrade when interannual variability and linear trend patterns are considered. The modeled regionwide average steric and dynamic sea level rise is larger than estimated from observations, and the marked observed increase in the subpolar gyre is not consistent with a forced response but rather a result of internal variability. Using a simple weighting scheme, it is shown that the results can be used to reduce uncertainties in sea level projections.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Environmental Research Letters, IOP Publishing, Vol. 15, No. 9 ( 2020-09-01), p. 094079-
    Abstract: In this study, we compare the spatial patterns of simulated geocentric sea-level change to observations from satellite altimetry over the period 1993–2015 to assess whether a forced signal is detectable. This is challenging, as on these time scales internal variability plays an important role and may dominate the observed spatial patterns of regional sea-level change. Model simulations of regional sea-level change associated with sterodynamic sea level, atmospheric loading, glacier mass change, and ice-sheet surface mass balance changes are combined with observations of groundwater depletion, reservoir storage, and dynamic ice-sheet mass changes. The resulting total geocentric regional sea-level change is then compared to independent measurements from satellite altimeter observations. The detectability of the climate-forced signal is assessed by comparing the model ensemble mean of the ‘historical’ simulations with the characteristics of sea-level variability in pre-industrial control simulations. To further minimize the impact of internal variability, zonal averages were produced. We find that, in all ocean basins, zonally averaged simulated sea-level changes are consistent with observations within sampling uncertainties associated with simulated internal variability of the sterodynamic component. Furthermore, the simulated zonally averaged sea-level change cannot be explained by internal variability alone—thus we conclude that the observations include a forced contribution that is detectable at basin scales.
    Type of Medium: Online Resource
    ISSN: 1748-9326
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2020
    detail.hit.zdb_id: 2255379-4
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Journal of Climate, American Meteorological Society, Vol. 30, No. 21 ( 2017-11), p. 8539-8563
    Abstract: Sea level change is one of the major consequences of climate change and is projected to affect coastal communities around the world. Here, global mean sea level (GMSL) change estimated by 12 climate models from phase 5 of the World Climate Research Programme’s Climate Model Intercomparison Project (CMIP5) is compared to observational estimates for the period 1900–2015. Observed and simulated individual contributions to GMSL change (thermal expansion, glacier mass change, ice sheet mass change, landwater storage change) are analyzed and compared to observed GMSL change over the period 1900–2007 using tide gauge reconstructions, and over the period 1993–2015 using satellite altimetry estimates. The model-simulated contributions explain 50% ± 30% (uncertainties 1.65 σ unless indicated otherwise) of the mean observed change from 1901–20 to 1988–2007. Based on attributable biases between observations and models, a number of corrections are proposed, which result in an improved explanation of 75% ± 38% of the observed change. For the satellite era (from 1993–97 to 2011–15) an improved budget closure of 102% ± 33% is found (105% ± 35% when including the proposed bias corrections). Simulated decadal trends increase over the twentieth century, both in the thermal expansion and the combined mass contributions (glaciers, ice sheets, and landwater storage). The mass components explain the majority of sea level rise over the twentieth century, but the thermal expansion has increasingly contributed to sea level rise, starting from 1910 onward and in 2015 accounting for 46% of the total simulated sea level change.
    Type of Medium: Online Resource
    ISSN: 0894-8755 , 1520-0442
    RVK:
    Language: English
    Publisher: American Meteorological Society
    Publication Date: 2017
    detail.hit.zdb_id: 246750-1
    detail.hit.zdb_id: 2021723-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...