GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 23, No. 6 ( 2023-03-31), p. 3829-3859
    Abstract: Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) has recently produced a greenhouse gas reanalysis (version egg4) that covers almost 2 decades from 2003 to 2020 and which will be extended in the future. This reanalysis dataset includes carbon dioxide (CO2) and methane (CH4). The reanalysis procedure combines model data with satellite data into a globally complete and consistent dataset using the European Centre for Medium-Range Weather Forecasts' Integrated Forecasting System (IFS). This dataset has been carefully evaluated against independent observations to ensure validity and to point out deficiencies to the user. The greenhouse gas reanalysis can be used to examine the impact of atmospheric greenhouse gas concentrations on climate change (such as global and regional climate radiative forcing), assess intercontinental transport, and serve as boundary conditions for regional simulations, among other applications and scientific uses. The caveats associated with changes in assimilated observations and fixed underlying emissions are highlighted, as is their impact on the estimation of trends and annual growth rates of these long-lived greenhouse gases.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2023
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 22 ( 2022-11-18), p. 14657-14692
    Abstract: Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) provides near-real-time forecast and reanalysis of aerosols using the ECMWF Integrated Forecasting System with atmospheric composition extension, constrained by the assimilation of MODIS and the Polar Multi-Sensor Aerosol Optical Properties (PMAp) aerosol optical depth (AOD). The objective of this work is to evaluate two new near-real-time AOD products to prepare for their assimilation into CAMS, namely the Copernicus AOD (collection 1) from the Sea and Land Surface Temperature Radiometer (SLSTR) on board Sentinel 3-A/B over ocean and the NOAA EPS AOD (v2.r1) from VIIRS on board S-NPP and NOAA20 over both land and ocean. The differences between MODIS (C6.1), PMAp (v2.1), VIIRS (v2.r1), and SLSTR (C1) AOD as well as their departure from the modeled AOD were assessed at the model grid resolution (i.e., level-3) using the 3-month AOD average (December 2019–February 2020 and March–May 2020). VIIRS and MODIS show the best consistency across the products, which is explained by instrument and retrieval algorithm similarities. VIIRS AOD is frequently lower over the ocean background and higher over biomass burning and dust source land regions compared to MODIS. VIIRS shows larger spatial coverage over land and resolves finer spatial structures such as the transport of Australian biomass burning smoke over the Pacific, which can be explained by the use of a heavy aerosol detection test in the retrieval algorithm. Our results confirm the positive offset over ocean (i) between Terra/MODIS and Aqua/MODIS due to the non-corrected radiometric calibration degradation of Terra/MODIS in the Dark Target algorithm and (ii) between SNPP/VIIRS and NOAA20/VIIRS due to the positive bias in the solar reflective bands of SNPP/VIIRS. SLSTR AOD shows much smaller level-3 values than the rest of the products, which is mainly related to differences in spatial representativity at the IFS grid spatial resolution due to the stringent cloud filtering applied to the SLSTR radiances. Finally, the geometry characteristics of the instrument, which drive the range of scattering angles sampled by the instrument, can explain a large part of the differences between retrievals such as the positive offset between PMAp datasets from MetOp-B and MetOp-A.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 21, No. 6 ( 2021-04-01), p. 5117-5136
    Abstract: Abstract. In this study, we present a novel monitoring methodology that combines satellite retrievals and forecasts to detect local CH4 concentration anomalies worldwide. These anomalies are caused by rapidly changing anthropogenic emissions that significantly contribute to the CH4 atmospheric budget and by biases in the satellite retrieval data. The method uses high-resolution (7 km × 7 km) retrievals of total column CH4 from the TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel 5 Precursor satellite. Observations are combined with high-resolution CH4 forecasts (∼ 9 km) produced by the Copernicus Atmosphere Monitoring Service (CAMS) to provide departures (observations minus forecasts) at close to the satellite's native resolution at appropriate time. Investigating these departures is an effective way to link satellite measurements and emission inventory data in a quantitative manner. We perform filtering on the departures to remove the synoptic-scale and meso-alpha-scale biases in both forecasts and satellite observations. We then apply a simple classification scheme to the filtered departures to detect anomalies and plumes that are missing (e.g. pipeline or facility leaks), underreported or overreported (e.g. depleted drilling fields) in the CAMS emissions. The classification method also shows some limitations to detect emission anomalies only due to local satellite retrieval biases linked to albedo and scattering issues.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Atmospheric Chemistry and Physics, Copernicus GmbH, Vol. 22, No. 9 ( 2022-05-06), p. 5961-5981
    Abstract: Abstract. Concentrations of atmospheric methane (CH4), the second most important greenhouse gas, continue to grow. In recent years this growth rate has increased further (2020: +15.6 ppb), the cause of which remains largely unknown. Here, we demonstrate a high-resolution (∼80 km), short-window (24 h) 4D-Var global inversion system based on the ECMWF Integrated Forecasting System (IFS) and newly available satellite observations. The largest national disagreement found between prior (5.3 Tg per month) and posterior (5.0 Tg per month) CH4 emissions is from China, mainly attributed to the energy sector. Emissions estimated from our global system are in good agreement with those of previous regional studies and point source-specific studies. Emission events (leaks or blowouts) 〉 10 t CH4 h−1 were detected, but without appropriate prior uncertainty information, were not well quantified. Our results suggest that global anthropogenic CH4 emissions for the first 6 months of 2020 were, on average, 470 Gg per month (+1.6 %) higher than for 2019, mainly attributed to the energy and agricultural sectors. Regionally, the largest increases were seen from China (+220 Gg per month, 4.3 %), with smaller increases from India (+50 Gg per month, 1.5 %) and the USA (+40 Gg per month, 2.2 %). When assuming a consistent year-on-year positive trend in emissions, results show that during the onset of the global slowdown (March–April 2020) energy sector CH4 emissions from China increased above expected levels; however, during later months (May–June 2020) emissions decreased below expected levels. Results for the first 6 months of 2019/20 suggest that the accumulated impact of the COVID-19 slowdown on CH4 emissions from March–June 2020 might be small relative to the long-term positive trend in emissions. Changes in OH concentration, not investigated here, may have contributed to the observed growth in 2020.
    Type of Medium: Online Resource
    ISSN: 1680-7324
    Language: English
    Publisher: Copernicus GmbH
    Publication Date: 2022
    detail.hit.zdb_id: 2092549-9
    detail.hit.zdb_id: 2069847-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Bulletin of the American Meteorological Society, American Meteorological Society, Vol. 103, No. 12 ( 2022-12), p. E2650-E2668
    Abstract: The Copernicus Atmosphere Monitoring Service (CAMS), part of the European Union’s Earth observation program Copernicus, entered operations in July 2015. Implemented by the European Centre for Medium-Range Weather Forecasts (ECMWF) as a truly European effort with over 23,500 direct data users and well over 200 million end users worldwide as of March 2022, CAMS delivers numerous global and regional information products about air quality, inventory-based emissions and observation-based surface fluxes of greenhouse gases and from biomass burning, solar energy, ozone and UV radiation, and climate forcings. Access to CAMS products is open and free of charge via the Atmosphere Data Store. The CAMS global atmospheric composition analyses, forecasts, and reanalyses build on ECMWF’s Integrated Forecasting System (IFS) and exploit over 90 different satellite data streams. The global products are complemented by coherent higher-resolution regional air quality products over Europe derived from multisystem analyses and forecasts. CAMS information products also include policy support such as quantitative impact assessment of short- and long-term pollutant-emission mitigation scenarios, source apportionment information, and annual European air quality assessment reports. Relevant CAMS products are cited and used for instance in IPCC Assessment Reports. Providing dedicated support for users operating smartphone applications, websites, or TV bulletins in Europe and worldwide is also integral to the service. This paper presents key achievements of the CAMS initial phase (2014–21) and outlines some of its new components for the second phase (2021–28), e.g., the new Copernicus anthropogenic CO 2 emissions Monitoring and Verification Support capacity that will monitor global anthropogenic emissions of key greenhouse gases.
    Type of Medium: Online Resource
    ISSN: 0003-0007 , 1520-0477
    Language: Unknown
    Publisher: American Meteorological Society
    Publication Date: 2022
    detail.hit.zdb_id: 2029396-3
    detail.hit.zdb_id: 419957-1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...