GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Society for Microbiology  (2)
Material
Publisher
  • American Society for Microbiology  (2)
Language
Years
  • 1
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 10, No. 6 ( 2022-12-21)
    Abstract: The folding and dynamics of three-dimensional (3D) genome organization are fundamental for eukaryotes executing genome functions but have been largely unexplored in nonmodel fungi. Using high-throughput sequencing coupled with chromosome conformation capture (Hi-C) data, we generated two chromosome-level assemblies for Puccinia striiformis f. sp. tritici , a fungus causing stripe rust disease on wheat, for studying 3D genome architectures of plant pathogenic fungi. The chromatin organization of the fungus followed a combination of the fractal globule model and the equilibrium globule model. Surprisingly, chromosome compartmentalization was not detected. Dynamics of 3D genome organization during two developmental stages of P. striiformis f. sp. tritici indicated that regulation of gene activities might be independent of the changes of genome organization. In addition, chromatin conformation conservation was found to be independent of genome sequence synteny conservation among different fungi. These results highlighted the distinct folding principles of fungal 3D genomes. Our findings should be an important step toward a holistic understanding of the principles and functions of genome architecture across different eukaryotic kingdoms. IMPORTANCE Previously, our understanding of 3D genome architecture has mainly come from model mammals, insects, and plants. However, the organization and regulatory functions of 3D genomes in fungi are largely unknown. In this study, we comprehensively investigated P. striiformis f. sp. tritici , a plant fungal pathogen, and revealed distinct features of the 3D genome, comparing it with the universal folding feature of 3D genomes in higher eukaryotic organisms. We further suggested that there might be distinct regulatory mechanisms of gene expression that are independent of chromatin organization changes during the developmental stages of this rust fungus. Moreover, we showed that the evolutionary pattern of 3D genomes in this fungus is also different from the cases in mammalian genomes. In addition, the genome assembly pipeline and the generated two chromosome-level genomes will be valuable resources. These results highlighted the unexplored distinct features of 3D genome organization in fungi. Therefore, our study provided complementary knowledge to holistically understand the organization and functions of 3D genomes across different eukaryotes.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2022
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Microbiology Spectrum, American Society for Microbiology, Vol. 11, No. 1 ( 2023-02-14)
    Abstract: Wheat dwarf bunt leads to the replacement of seeds with fungal galls containing millions of teliospores of the pathogen Tilletia controversa Kühn. As one of the most devastating internationally quarantined wheat diseases, wheat dwarf bunt spreads to cause distant outbreaks by seeds containing teliospores. In this study, based on a combination of amplicon sequencing and isolation approaches, we analyzed the seed microbiome signatures of endophytes between resistant and susceptible cultivars after infection with T. controversa . Among 310 bacterial species obtained only by amplicon sequencing and 51 species obtained only by isolation, we found 14 overlapping species by both methods; we detected 128 fungal species only by amplicon sequencing, 56 only by isolation, and 5 species by both methods. The results indicated that resistant uninfected cultivars hosted endophytic communities that were much more stable and beneficial to plant health than those in susceptible infected cultivars. The susceptible group showed higher diversity than the resistant group, the infected group showed more diversity than the uninfected group, and the microbial communities in seeds were related to infection or resistance to the pathogen. Some antagonistic microbes significantly suppressed the germination rate of the pathogen’s teliospores, providing clues for future studies aimed at developing strategies against wheat dwarf bunt. Collectively, this research advances the understanding of the microbial assembly of wheat seeds upon exposure to fungal pathogen ( T. controversa ) infection. IMPORTANCE This is the first study on the microbiome signature of endophytes in wheat seed response to wheat dwarf bunt caused by Tilletia controversa Kühn. Some antagonistic microbes suppressed the germination of teliospores of the pathogen significantly, which will provide clues for future studies against wheat dwarf bunt. Collectively, this research first advances the understanding of the microbial assembly of wheat seed upon exposure to the fungal pathogen ( T. controversa ) infection.
    Type of Medium: Online Resource
    ISSN: 2165-0497
    Language: English
    Publisher: American Society for Microbiology
    Publication Date: 2023
    detail.hit.zdb_id: 2807133-5
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...