GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association for Cancer Research (AACR)  (2)
  • Reis, Antonio M.C.  (2)
  • Medicine  (2)
Material
Publisher
  • American Association for Cancer Research (AACR)  (2)
Language
Years
Subjects(RVK)
  • Medicine  (2)
RVK
  • 1
    Online Resource
    Online Resource
    American Association for Cancer Research (AACR) ; 2010
    In:  Cancer Research Vol. 70, No. 8_Supplement ( 2010-04-15), p. 3055-3055
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 70, No. 8_Supplement ( 2010-04-15), p. 3055-3055
    Abstract: Background and Purpose: Cervical cancer is one of the most common malignancies and major causes of death in women worldwide. Aberrant activation of Wnt/β-catenin pathway is associated with various cancers including cervical cancer. Mutations within intracellular components of the Wnt pathway are rare in cervical cancer. We hypothesize that alterations in secreted Wnt antagonists might play a major role in Wnt activation. Here we characterize the status of the Wnt inhibitory factor 1 (WIF1) in cervical cancer cell lines and determined the in vitro effects of WIF1 on cervical cancer cells. Methods: Three cervical cancer cell lines (HeLa, C33A and CC1) were treated with the demethylating agent 5-aza-2′-deoxycytidine (DAC) for 4 days, total RNA was isolated and real-time RT-PCR was performed to determine WIF1 mRNA expression. HeLa cells were transfected simultaneously with either pCI blast (empty vector) or pCI blast-WIF1 using LipoD293 transfection reagent and assessed for cell proliferation and apoptosis. Cell proliferation was determined at different time intervals (24, 48, 72 and 96 h) by hexosaminidase assay. Cell cycle analysis was performed after 72 h by flow cytometry using FACSCalibur analyzer. Caspase 3/7 activity was measured using the Apo-one Homogeneous Caspase-3/7 Assay kit. Results: We demonstrated that WIF1 is down-regulated in cervical cancer cells. Treatment with DAC caused a significant increase in WIF1 mRNA expression in all the cell lines tested compared with vehicle treatment. Furthermore, transfection with a plasmid expressing WIF1 significantly inhibited cervical cancer cell proliferation at all time points studied. To probe the possible mechanisms involved in WIF1 cell growth inhibition, we performed cell cycle analysis and caspase 3/7 assay. Interestingly, cell cycle analysis demonstrated that transfection with WIF1 significantly increased the G2-M cell population and the number of apoptotic cells. In addition, WIF1 significantly induced caspase 3/7 activity suggesting that WIF1 induced apoptosis is mediated through caspase 3/7 activation. Conclusions: Our data suggests that WIF1 is silenced in cervical cancer cells and WIF1 restoration inhibits cervical cancer cell growth by inducing G2-M arrest and apoptosis. This study emphasizes the importance of WIF1 as a potential therapeutic strategy in the treatment of cervical cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research; 2010 Apr 17-21; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2010;70(8 Suppl):Abstract nr 3055.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2010
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Cancer Research, American Association for Cancer Research (AACR), Vol. 71, No. 18_Supplement ( 2011-09-15), p. C21-C21
    Abstract: Background and Purpose: Cervical cancer is the leading cause of morbidity and mortality among women worldwide. It is also the second most common cause of cancer deaths in women. Recent studies suggest that aberrant activation of the Wingless-type (Wnt) pathway plays an important role in cervical cancer. However, the mechanisms and implications of Wnt activation in human cervical cancer are yet to be determined. We hypothesized that the Wnt inhibitory factor 1 (WIF1), a secreted Wnt antagonist, might be silenced in human cervical cancer. Therefore, we characterized the methylation status of WIF1 gene, its mRNA and protein expression in human cervical cancer samples. We also determined the effects of WIF1 treatment on tumor growth in a xenograft mouse model. Methods: To study WIF1 promoter methylation, genomic DNA was isolated from human normal and cancerous cervical samples, processed for bisulfite modification using EZ DNA methylation kit and WIF1 methylation-specific PCR was performed. WIF1 mRNA and protein expression in human cervical normal epithelium and tumor samples were assessed by real-time RTPCR and immunohistochemistry, respectively. To determine the tumor suppressive effects of WIF1, tumor xenograft studies were performed by injecting HeLa cells subcutaneously into the flanks of nude mice. Palpable tumors were treated for 7 weeks with peritumoral injection of pCI-blast-WIF1 expression vector that expresses the full WIF1 protein. Results: Our study demonstrates that WIF1 promoter hypermethylation is a frequent mechanism leading to WIF1 down-regulation as observed by decreased WIF1 mRNA and protein expression in cervical cancer compared with normal tissue. Furthermore, treatment of human cervical cancer in a xenograft mouse model by WIF1 gene transfer significantly inhibited the tumor growth by decreasing the expression of TCF-4, β-catenin, c-myc, cyclin D1 and CD44. WIF1 elicited its tumor suppressive effects by acting at multiple levels in Wnt/β-catenin pathway, in addition to modulating the expression of antiapoptotic (Bcl-2) and apoptotic proteins (p53, p21 and caspase-3), leading to a significant reduction in tumor cell proliferation and induction of massive apoptosis. Of major clinical relevance, while vector treated tumors were highly infiltrative, WIF1 treated tumors presented mainly with pushing borders, a characteristic feature of benign tumors. In addition, WIF1 treatment decreased the expression of angiogenic factors, VEGF and CD31, and significantly reduced the tumor vascular irrigation. Conclusions: Our findings for the first time demonstrate that WIF1 is silenced by promoter hypermethylation and identify WIF1 down-regulation as an important mechanism of Wnt activation in cervical cancer. Remarkably, our in vivo study emphasizes the anti-invasive, anti-angiogenic and tumor suppressive effects of WIF1 and therefore its potential therapeutic value in the treatment of cervical cancer. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the Second AACR International Conference on Frontiers in Basic Cancer Research; 2011 Sep 14-18; San Francisco, CA. Philadelphia (PA): AACR; Cancer Res 2011;71(18 Suppl):Abstract nr C21.
    Type of Medium: Online Resource
    ISSN: 0008-5472 , 1538-7445
    RVK:
    RVK:
    Language: English
    Publisher: American Association for Cancer Research (AACR)
    Publication Date: 2011
    detail.hit.zdb_id: 2036785-5
    detail.hit.zdb_id: 1432-1
    detail.hit.zdb_id: 410466-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...