GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Reinhardt, Dirk  (8)
  • van den Heuvel-Eibrink, Marry M  (8)
  • 1
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1509-1509
    Abstract: Pediatric acute myeloid leukemia (AML) is a heterogeneous disease, which is classified according to the WHO classification, based on morphology, immunophenotyping and non-random genetic aberrations. AML is hypothesized to arise from two different types of genetic aberrations, i.e. type-I (proliferation enhancing) mutations and type-II (differentiation impairing) mutations. To detect genetic aberrations multiple techniques such as conventional karyotyping, FISH and RT-PCR are being used. In addition to conventional karyotyping, the latter two techniques revealed a higher frequency of aberrations. Still, failures or false negative results should be taken into account. Recent studies have focused on the potential of gene expression profiling (GEP) to classify acute leukemias. To study the clinical value of classification by GEP, we first used a double-loop cross validation (CV) to avoid over-fitting of GEP data and, subsequently, addressed whether the identified GEP was suitable to classify pediatric AML cases in a second independent group of cases. Affymetrix Human Genome U133 plus 2.0 microarrays were used to generate gene expression profiles of 257 children with AML, with high blast counts, if necessary, after enrichment (~80% or more) and good quality RNA. Probe set intensities were normalized using the variance-stabilizing normalization (VSN) implemented in R (version 2.2.0). The patient group was divided into a test cohort (n=170) and an independent validation cohort (n=87). The test cohort was used to construct the classifier using two levels of CV: the minimum number of predictive genes was estimated using a 10-fold CV on random subsets of about 113 (~2/3 of total) patients; the accuracy of the obtained classifier is estimated on the remaining 57 (~1/3) patients. Candidate genes to represent the GEP in the classifier were those genes that discriminated AML subtypes according to an empirical Bayes linear regression model (Bioconductor package: Limma). To construct a reliable classifier it was sufficient to use 75 probe sets, representing the top 15 discriminating probe sets for MLL-gene rearranged AML, t(8;21), inv(16), t(15;17) and t(7;12). These subtypes represented ~50% of the included patients. The remaining patients either had normal cytogenetics, random aberrations or no data available (cytogenetic failure). Due to the heterogeneity of these remaining groups discriminative probe sets were not found. This classifier could reliably predict the 5 subtypes with a median accuracy of 93%. Validation of the classifier on the independent cohort confirmed that the sensitivity and accuracy was more than 99%. No gene expression signatures could be found for the molecular aberrations NPM1, CEBPa, MLL-PTD, FLT3, C-KIT, RAS or PTPN1, possibly due to the small number of cases. However, specific gene expression signatures were found for FLT3-ITD within the subset of cases with t(15;17) or normal cytogenetics. Importantly, a high expression of HOXB-cluster related genes was found in cases with FLT3-ITD and normal cytogenetics. In conclusion, GEP can correctly predict several important cytogenetic subtypes of pediatric AML, including cases that are currently classified using different cytogenetic techniques and cases with failed cytogenetic analysis. Prospective studies are needed to validate the use of GEP in the classification of pediatric AML, especially to provide information on its utility in clinical practice. Increasing numbers in rare subtypes may result in the discovery of genes discriminative for them, and may foster GEP as a new diagnostic tool.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1802-1802
    Abstract: The EVI1 (ecotropic virus integration-1) gene plays an important role in hematopoiesis especially in megakaryocyte development. The MDS1 gene is located upstream of EVI1, and its function is currently unknown. Normally the MDS1/EVI1 intergenic splice variant is co-expressed with EVI1. In adult acute myeloid leukemia (AML) overexpression of EVI1 (EVI1+) can be found in patients with chromosome 3q26-rearrangements. Often, these patients do not co-express MDS1/EVI1. Recently high EVI1 expression was also discovered in a separate subgroup of patients that did not have 3q26-rearrangements. Occasionally, they did not show overexpression of MDS1/EVI1. In these patients cryptic inversions of chromosome 3 were identified with fluorescence in situ hybridization (FISH). Of interest, EVI1+ was found to be an independent poor prognostic marker in adult AML (Lugthart et al, Blood 2008). In pediatric AML, 3q26-rearrangements are rare and the role of EVI1 is unknown. In this study, we investigated the frequency and clinical relevance of EVI1+ in pediatric AML. EVI1 expression was analyzed in 233 pediatric AML patients, of whom microarray gene expression profiling data were available. EVI1+ was found in 25 pediatric AML patients (11%), and confirmed with real-time quantitative PCR. This included 13/49 (26%) patients with MLL-rearranged AML: 5/22 (23%) cases with t(9;11); and all (n=4) cases with t(6;11). Moreover, EVI1+ was found in 4/7 (57%) cases with AML M7; in 2/3 (66%) cases with AML M6; in both cases with monosomy 7; in 1/43 (2%) cases with normal cytogenetics; in 2 patients with random cytogenetics, and in 1 patient with a cytogenetic failure. EVI1+ was not found in the t(8;21), inv(16) and t(15;17) subgroups. 3/25 EVI1+ patients lacked the MDS/EVI1 transcript, but no cryptic 3q26-rearrangements were detected with FISH. Molecular analysis showed that one patient had a CEBPα mutation; one patient had an FLT3-ITD; and 3 patients showed a mutation in the RAS oncogene. EVI+ was not correlated with sex or white blood cell count. However, the frequency in children younger than 10 years old was twice as high when compared to older children (14% vs 7%, p=0.12). Survival analysis was restricted to the subset of patients who were treated using uniform DCOG and BFM treatment protocols (n=204). In this cohort, EVI1+ patients had a worse 5-years event-free survival (pEFS) compared to patients without EVI1+ (30 vs. 43%, p=0.02). However, multivariate analysis, including cytogenetics (favorable [t(8;21, inv(16), t(15;17)] vs. other), FLT3-ITD, age and WBC, showed that EVI1+ was not an independent prognostic factor for survival. Moreover, within the unfavorable/normal cytogenetic subgroup, there was no difference in outcome between patients with and without EVI1+. We conclude that EVI1+ is found in ~10% of pediatric AML, and highly correlated with specific unfavorable cytogenetic (MLL-rearrangements) and morphologic (FAB M6/7) subtypes. In contrast to adult AML, no 3q26-rearrangements or cryptic inversions were found, and EVI1+ was not an independent prognostic factor. This difference in prognostic relevance may be due to differences in treatment. Alternatively, these results may indicate that EVI1 plays a different role in disease biology between adult and pediatric AML. This is at least suggested by the lack of 3q26 aberrations in pediatric AML.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Blood, American Society of Hematology, Vol. 112, No. 11 ( 2008-11-16), p. 1512-1512
    Abstract: Mixed-lineage leukemia (MLL)-partial tandem duplications (PTD) consist of an inframe repetition of MLL exons, which seems to be the result of mispairing of repetitive regions with high homology. MLL-PTD is found in 3–5% of adult acute myeloid leukemia (AML) and is associated with poor prognosis. MLL-PTD is mutually exclusive with other known aberrations, except for trisomy 11 and FLT3-ITD in adult AML. Shimada et al. found a frequency of 13% for MLL-PTD in pediatric AML patients (n=185) with an adverse outcome. However 5/21 MLL-PTD cases were found in MLL-rearranged AML, and 4/21 cases in patients with a t(8;21). Screening was performed for MLLPTD transcripts only, which have also been detected in healthy adults and cord blood samples in up to 100% of the cases, although these expression levels were much lower. In this study we screened for MLL-PTD in pediatric AML on the genomic level. Retrospectively, a cohort of 248 children with AML was screened for MLL-PTD using multiplex ligation-dependent probe amplification (MLPA), which is a method to detect copy number differences of specific sequences. If possible, screening was also performed for MLL-PTD transcripts with RT-PCR. We designed a reaction mix for MPLA-analysis containing probes for exon 2 to 13 of MLL for MLL-PTD detection and exon 17 of MLL as internal control. A probe in the serpinB2 gene was used as external control. The patient samples were analyzed according to the manufacturer’s protocol (MRC Holland). Data were analyzed using GeneMarker v1.5. We detected MLL -PTD in 7/248 patients (2.8%), indicating a low frequency in pediatric AML. In all these patients also MLL-PTD transcripts were present. Three patients had normal cytogenetics; 1 patient had a trisomy 11, while for 3 patients no conventional cytogenetic data were available. Moreover, in 4 patients a FLT3-ITD was detected, in 1 other patient a FLT3 tyrosine kinase domain mutation, and in another patient a mutation in NRAS. MLL-PTD transcripts were also detected in some patients with an MLL-rearrangement. However, using MLPA, only exon deletions and amplifications were detected around the break-point region of MLL, but there was no evidence for MLL-PTD on the genomic level. MLL-PTD did not show preference for sex. The median age of patients with MLL-PTD was 7.5 (4.8–18) years and the median white blood cell count 95 × 109/l (44–170). Five of the 6 patients were treated with uniform DCOG and BFM protocols. Two patients were in continuous complete remission (CR) after 3 years. Two patients achieved CR; one however died after hematopoietic stem cell transplantation (HSCT) from an infection while the other one relapsed and was salvaged successfully. One patient had refractory disease and died from progressive disease following two HSCT’s. One patient was enrolled in the French LAME protocol, but died within 2 days from cerebral hemorrhage. Survival analysis was restricted to the subset of patients treated according to uniform DCOG and BFM treatment protocols (n=184). In this cohort, patients with MLL-PTD (n=5) had similar 3-years event-free survival rates (pEFS) compared to patients without MLL-PTD (40 vs. 44%, p=0.98). In conclusion, the frequency of MLL-PTD is lower than in adult AML and than previously described in another pediatric AML cohort. Moreover, MLPA can more accurately detect MLL-PTD compared to RT-PCR. In concordance with adult AML, it seems that MLL-PTD does not co-exist with other known aberrations, except for trisomy 11 and mutations in FLT3 or RAS. Due to the small sample-size of patients with MLL-PTD no clear conclusion on prognosis can be made, indicating that larger prospective studies are needed for the prognostic relevance and stratification of MLL-PTD in pediatric AML
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2008
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 1244-1244
    Abstract: MicroRNAs (miRNAs) are essential for maintenance and differentiation of normal hematopoietic cells and their dysregulation is strongly implicated in leukemias. In order to identify tumor suppressor miRNAs in the context of hematological malignancies, we performed two complementary miRNA expression screenings in normal hematopoiesis as well as in childhood and adult acute myeloid leukemias (AML). We reasoned that tumor suppressor miRNAs are upregulated in mature myeloid cells, as compared to normal hematopoietic stem and progenitor cells (HSPCs), and downregulated in AML. Based on this screening strategy, we identified the miR-193 family members as potent suppressors of HSPC activity and AML growth. During normal hematopoiesis mmu-miR-193a-3p is exclusively expressed in mature myeloid cells and absent in normal HSPCs. Accordingly, in a cohort of 165 pediatric AML patients hsa-miR-193b-3p was broadly repressed throughout the cytogenetically characterized subgroups. In addition, in a cohort of 43 adult AML patients, its homolog hsa-miR-193a-3p was significantly upregulated in APL cases (p=0.0025, n=7) compared to bone marrow from healthy donors (n=5). To assess the impact of the miR-193 family members on AML maintenance and development, we lentivirally expressed miR-193a/b in the MLL-rearranged cell lines ML2 and THP1, which induced monocytic differentiation in concert with calcitriol treatment, measured by CD11b/CD14 expression (p=0.024). Consistently, enforced miR-193-expression led to a significant growth disadvantage in ML2 and THP1 cells (p= 〈 0.001 and p=0.02, respectively) as well as to reduced colony formation (p=0.008) in methylcellulose-based colony-forming unit (CFU) assays. Noteworthy, these effects were not restricted to MLL-rearranged AML cell lines only, but were also evident in six other AML cell lines representing the most common AML subgroups, such as t(8;21) and t(15;17). Beyond the growth-suppressive and differentiation-inductive effect of miR-193 in human AML cell lines, overexpression of miR-193a caused a significant decrease of proliferation in murine bone marrow cells immortalized in vitro by retroviral expression of Hoxa9 or Hoxa9 and Meis1 (p=0.019 and p=0.008, respectively). Based on these findings in AML, we further investigated the impact of the miR-193 family on normal hematopoiesis. We retrovirally expressed miR-193a in 32D cells treated with granulocyte-colony stimulating factor (G-CSF), which resulted in a strong induction of myeloid differentiation already after day 2 (p=0.006) as assessed by CD11b/Gr-1 surface marker expression. We lentivirally transduced mouse lineage negative (Lin-) HSPCs and transplanted them into irradiated isogenic recipients. Bleedings performed on weeks 4, 8 and 11, as well as the examination of the bone marrow on week 11, showed a severe competitive disadvantage of miR-193-transduced cells (week 11: 2% GFP+ miR-193- vs. 25% GFP+ miR-NSC-transduced cells). These results were further refined using highly purified ESLAM (CD45+ EPCR+ CD48− CD150+) HSCs which failed to reconstitute hematopoiesis when overexpressing miR-193a, indicated by the absence of miR-193a/GFP+ cells at week 8 post transplantation. These observations might be explained by a potent G1 cell cycle arrest in HSPCs when overexpressing miR-193a/b (4-fold decrease in the S phase population) and induction of apoptosis. Our results in normal and malignant hematopoiesis suggested that the miR-193 family acts globally through targeting relevant stem cell pathways. To validate this hypothesis we quantified the knockdown of ten predicted miR-193 target genes. qRT-PCR analysis confirmed the down regulation of KIT, KRAS, SOS2 (key components of the MAPK signaling pathway) and CCND1, a CDK regulator of G1/S phase transition. We propose a dual regulatory platform where firstly, miR-193 targets CCND1 and controls the cell cycle kinetics of stem cells. Secondly, miR-193 interferes with the KIT proto-oncogene and the RAS pathway thereby inhibiting crucial pro-proliferation and anti-apoptotic signaling cascades. Taken together, we identified the miR-193 family as a pan-tumor suppressor in childhood and adult AML. Its anti-leukemic effect is mediated by targeting the stem cell KIT/SOS2/RAS/RAF axis. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 2390-2390
    Abstract: Abstract 2390 Poster Board II-367 In recent years miRNA expression patterns have been related to tumor (sub)type and disease outcome in various types of cancer, including acute myeloid leukemia (AML). Therefore, miRNA profiling may provide information for better classification and risk stratification of AML subtypes, and in addition may shed light on the underlying disease biology. To date large scale miRNA profiling has only been performed in adult AML, which differs from childhood AML in many ways, reflected in differences in cytogenetic subgroups, response to therapy and prognosis. However, knowledge on the role of miRNAs in childhood AML is limited. To answer the question if differential expression of miRNAs can be observed in subtypes of pediatric AML, we used quantitative RT-PCR to determine the expression levels of miR-29a, -155, -196a and -196b in a selection of de novo pediatric AML patients (n=49-84) representing the different cytogenetic subtypes. These miRNAs have been reported to be differentially expressed in cytogenetic and morphological subtypes of adult AML. In AML with t(10;11) MLL-rearrangements (n=5) versus all other AML samples expression of miR-29a was 2.4-fold lower (p=0.005). However, differences in expression of miR-29a in all MLL-rearranged AML compared to other AML patients were small and not significant, in contrast to what was found in adults. MiR-155 was upregulated 2.3-fold (p=0.0003) in FLT3-ITD-mutated AML (n=8) compared to all other AML samples, which is consistent to what has been reported for adult AML. The expression of both miRNA-196a and –196b differed extremely between patients. High expression of both miRNAs was observed in patients carrying MLL-gene rearrangements, NPM1 mutations, or FLT3-ITD mutations in a normal karyotype background. Low expression was found in t(8;21), inv(16) and t(15;17) subtypes (including those with FLT3-ITD mutations), and in patients with mutated CEBPA. The median difference between these groups of patients was 147-fold for miR-196a (n=73, p 〈 0.0001), and 654-fold for miR-196b (n=64, p 〈 0.0001). A moderate to strong correlation was found between miR-196a/b expression and mRNA levels of several genes of the HOXA and HOXB cluster, and MEIS1 (Spearman's correlation coefficient = 0.504-0.818, p 〈 0.001). Correlation was also found between miR-196a/b and HOXA9, HOXA10 and HOXB9 mRNA levels, adjacent to which these miR-genes are located. In almost all patients, both miRNAs were overexpressed at the same time, and expression levels of miR-196a and –196b were highly correlated to each other (Spearman's = 0.865). Upregulation of miR-196a and 196b has also been reported in MLL-rearranged and NPM1-mutated AML in adults. Both miRNAs have multiple predicted targets in the HOX gene cluster, and have been suggested to regulate the expression of HOX genes. In addition, overexpression of miR-196b has been shown to block granulopoiesis. However, further studies are required to determine if overexpression of these miRNAs contributes to leukemogenesis, or is merely a bystander effect of increased HOX gene expression. Our results confirm subgroup specific miRNA expression in pediatric AML, and are mostly but not always consistent to what has been described for adult AML. This underlines the importance to further analyze the expression of known and novel miRNA genes in childhood AML. Disclosures: No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Blood, American Society of Hematology, Vol. 114, No. 22 ( 2009-11-20), p. 3471-3471
    Abstract: Abstract 3471 Poster Board III-359 One important cytogenetic subgroup of pediatric acute myeloid leukemia (AML) is characterized by translocations of chromosome 11q23, which accounts for 15 to 20% of all cases with an evaluable chromosome analysis. In most of these cases, the mixed lineage leukemia (MLL) gene is involved. More than 50 fusion translocation partners of the MLL gene have been identified and outcome differs by translocation partner, suggesting differences in the biological background. So far these biological differences have not been unravelled. Therefore, we investigated the gene expression profiles of MLL-rearranged subgroups in pediatric AML in order to discover and identify the role of differentially expressed genes. Affymetrix Human Genome U133 plus 2.0 microarrays were used to generate gene expression profiles of 257 pediatric AML cases, which included 21 pediatric AML cases with t(9;11)(p22;q23) and 33 with other MLL-rearrangements. With these profiles, we were able to identify a specific gene expression signature for t(9;11)(p22;q23) using an empirical Bayes linear regression model (Bioconductor package: Limma). This signature was mainly determined by overexpression of the BRE (brain and reproductive organ-expressed) gene. The mean average VSN normalized expression for BRE in the t(9;11)(p22;q23) subgroup was 3.7-fold higher compared with that in other MLL-rearranged cases (p 〈 0.001). Validation by RQ-PCR confirmed this higher expression in t(9;11)(p22;q23) cases (p 〈 0.001). In addition, we confirmed that overexpression of BRE was predominantly found in t(9;11)(p22;q23) in an independent gene expression profile cohort (Ross et al, Blood 2002). Remarkably, MLL-rearranged cases with a BRE expression higher than the mean expression showed a significant better 3 year disease free survival than MLL-rearranged cases with a lower expression (80±13% vs. 30±10%, p=0.02). Previously, overexpression of BRE has been described in hepatocellular carcinomas (HCC) (Chang et al., Oncogene 2008) and an anti-apoptotic effect was described. We transfected BRE in the monomac-1 cell line, which harbors a t(9;11)(p22;q23). We did not find a proliferative advantage for BRE overexpression using a BrDU-assay nor changes in drug sensitivity, indicating that the anti-apoptotic effect as described for HCC in vivo could not be confirmed in vitro in AML. In conclusion, overexpression of the BRE gene is predominantly involved in pediatric MLL-rearranged AML with t(9;11)(p22;q23). Moreover, high expression of BRE showed a favorable prognosis. We did not find any influence of BRE expression on cell proliferation or apoptosis in vitro. This indicates that further studies involving the role of the MLL-fusion protein on BRE transcription are necessary to unravel the leukemogenic role in pediatric AML. Disclosures No relevant conflicts of interest to declare.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2009
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Nature Genetics, Springer Science and Business Media LLC, Vol. 49, No. 3 ( 2017-3), p. 451-456
    Type of Medium: Online Resource
    ISSN: 1061-4036 , 1546-1718
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2017
    detail.hit.zdb_id: 1494946-5
    detail.hit.zdb_id: 1108734-1
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Blood, American Society of Hematology, Vol. 126, No. 23 ( 2015-12-03), p. 171-171
    Abstract: Acute Megakaryoblastic Leukemia (AMKL) is a subtype of acute myeloid leukemia (AML) that morphologically resembles abnormal megakaryoblasts. While extremely rare in adults, pediatric cases comprise 4-15% of newly diagnosed AML patients. Clinical outcomes for Down syndrome (DS) patients with AMKL are uniformly excellent, whereas studies on non-DS patients (non-DS-AMKL) are more variable with the majority reporting inferior survival rates compared to other AML subtypes. Furthermore, the recommendation for stem cell transplant (SCT) in first remission for non-DS-AMKL patients is not uniform among pediatric cooperative groups. Previous efforts have identified chimeric oncogenes in non-DS-AMKL cases, including RBM15-MKL1, CBFA2T3-GLIS2, MLL gene rearrangements and NUP98-KDM5A. The etiology of 30-40% of cases, however, remains unknown. To better understand the genomic landscape of non-DS-AMKL and its contribution to clinical outcomes, we performed RNA and exome sequencing on specimens from 115 patients compiled from eight institutions and three cooperative groups including 90 pediatric and 25 adult cases. Of the 104 patients for whom RNA was available, 27.8% (5/18) adult and 72% (62/86) pediatric cases carried a high confidence fusion event by RNAseq. The most frequent fusions in the pediatric cohort when combining RNAseq data, cytogenetics and RT-PCR include CBFA2T3-GLIS2 (17/90), MLL r (13/90), NUP98-KDM5A (9/90), and RBM15-MKL1 (9/90). Previously described low frequency fusions identified in this expanded cohort, include a case of NIPBL-HOXB9 and a novel but functionally analogous NIPBL-HOXA9 fusion. Similarly, a case carrying GATA2-HOXA10 was identified, which is functionally equivalent to the GATA2-HOXA9 fusion that has been reported in a single case. Chimeric transcripts not previously described include several fusions involving genes within the HOX cluster (HOTAIRM1-HOXA3, HOXA_AS3-HOXA9, EWSR1-HOXB8, PLEK-HOXA11-AS, and BMP2K-HOXD10 each in a single case). Collectively, fusions involving a HOX cluster gene (HOX r) occurred in 11% of the pediatric cohort. Single Nucleotide Variation (SNV) analysis of exome and RNAseq data on the cohort revealed the presence of truncating GATA1 mutations in one adult and 10 pediatric specimens lacking fusion genes. Patients carrying GATA1 mutations did not have stigmata of DS or evidence of mutant reads in germline DNA, suggesting they are not mosaics. To determine if these fusion events contribute significantly to gene expression patterns, samples with greater than 60% purity were subjected to unsupervised clustering. Confirming the strength of the fusions in altering gene expression signatures, samples clustered according to fusion subtype and were distinct from those carrying GATA1 mutations. Specifically MLL r, HOX r, NUP98-KDM5A, and CBFA2T3-GLIS2 cases formed distinct clusters. When analyzing differentially upregulated genes within these subgroups, HOX r cases demonstrated upregulation of a HOX gene signature. Combined with MLL r and NUP98-KDM5A, chimeric oncogenes also known to upregulate HOX cluster genes, roughly one-third of pediatric non-DS-AMKL patients carry a HOX gene expression program. These cases were distinct from those carrying the CBFA2T3-GLIS2 inversion. HOX genes play a significant role in normal hematopoietic development and data suggests that deregulated expression has a central role in the etiology of several subtypes of acute leukemia, in part through the acquisition of enhanced self-renewal. We evaluated our identified HOXr for their ability to serially replate in murine colony formation assays as a surrogate marker of this characteristic. Confirming their pathogenicity, chimeric transcripts conferred an enhanced ability to replate. We conclude that chimeric transcripts involving HOX cluster genes comprise a distinct subset of pediatric AMKL. Clinical outcome analyses between genomic subgroups of this heterogeneous malignancy may allow us to more effectively risk stratify these patients and determine those that may benefit from SCT in first remission. JdR and CB contributed equally FL, DR, MH-E, MF, CMZ, and TAG co-corresponding authors on behalf of AIEOP, BFM, DCOG, and SJCRH study groups Disclosures Shih: Novartis: Research Funding.
    Type of Medium: Online Resource
    ISSN: 0006-4971 , 1528-0020
    RVK:
    RVK:
    Language: English
    Publisher: American Society of Hematology
    Publication Date: 2015
    detail.hit.zdb_id: 1468538-3
    detail.hit.zdb_id: 80069-7
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...