GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Ovid Technologies (Wolters Kluwer Health)  (3)
  • Redline, Susan  (3)
  • 1
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 145, No. 5 ( 2022-02), p. 357-370
    Abstract: Plasma proteins are critical mediators of cardiovascular processes and are the targets of many drugs. Previous efforts to characterize the genetic architecture of the plasma proteome have been limited by a focus on individuals of European descent and leveraged genotyping arrays and imputation. Here we describe whole genome sequence analysis of the plasma proteome in individuals with greater African ancestry, increasing our power to identify novel genetic determinants. Methods: Proteomic profiling of 1301 proteins was performed in 1852 Black adults from the Jackson Heart Study using aptamer-based proteomics (SomaScan). Whole genome sequencing association analysis was ascertained for all variants with minor allele count ≥5. Results were validated using an alternative, antibody-based, proteomic platform (Olink) as well as replicated in the Multi-Ethnic Study of Atherosclerosis and the HERITAGE Family Study (Health, Risk Factors, Exercise Training and Genetics). Results: We identify 569 genetic associations between 479 proteins and 438 unique genetic regions at a Bonferroni-adjusted significance level of 3.8×10 -11 . These associations include 114 novel locus-protein relationships and an additional 217 novel sentinel variant-protein relationships. Novel cardiovascular findings include new protein associations at the APOE gene locus including ZAP70 (sentinel single nucleotide polymorphism [SNP] rs7412-T, β=0.61±0.05, P =3.27×10 -30 ) and MMP-3 (β=-0.60±0.05, P =1.67×10 -32 ), as well as a completely novel pleiotropic locus at the HPX gene, associated with 9 proteins. Further, the associations suggest new mechanisms of genetically mediated cardiovascular disease linked to African ancestry; we identify a novel association between variants linked to APOL1-associated chronic kidney and heart disease and the protein CKAP2 (rs73885319-G, β=0.34±0.04, P =1.34×10 -17 ) as well as an association between ATTR amyloidosis and RBP4 levels in community-dwelling individuals without heart failure. Conclusions: Taken together, these results provide evidence for the functional importance of variants in non-European populations, and suggest new biological mechanisms for ancestry-specific determinants of lipids, coagulation, and myocardial function.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2022
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Circulation: Genomic and Precision Medicine, Ovid Technologies (Wolters Kluwer Health), Vol. 14, No. 4 ( 2021-08)
    Abstract: Alterations in electrocardiographic (ECG) intervals are well-known markers for arrhythmia and sudden cardiac death (SCD) risk. While the genetics of arrhythmia syndromes have been studied, relations between electrocardiographic intervals and rare genetic variation at a population level are poorly understood. Methods: Using a discovery sample of 29 000 individuals with whole-genome sequencing from Trans-Omics in Precision Medicine and replication in nearly 100 000 with whole-exome sequencing from the UK Biobank and MyCode, we examined associations between low-frequency and rare coding variants with 5 routinely measured electrocardiographic traits (RR, P-wave, PR, and QRS intervals and corrected QT interval). Results: We found that rare variants associated with population-based electrocardiographic intervals identify established monogenic SCD genes ( KCNQ1 , KCNH2 , and SCN5A ), a controversial monogenic SCD gene ( KCNE1 ), and novel genes ( PAM and MFGE8 ) involved in cardiac conduction. Loss-of-function and pathogenic SCN5A variants, carried by 0.1% of individuals, were associated with a nearly 6-fold increased odds of the first-degree atrioventricular block ( P =8.4×10 −5 ). Similar variants in KCNQ1 and KCNH2 (0.2% of individuals) were associated with a 23-fold increased odds of marked corrected QT interval prolongation ( P =4×10 −25 ), a marker of SCD risk. Incomplete penetrance of such deleterious variation was common as over 70% of carriers had normal electrocardiographic intervals. Conclusions: Our findings indicate that large-scale high-depth sequence data and electrocardiographic analysis identifies monogenic arrhythmia susceptibility genes and rare variants with large effects. Known pathogenic variation in conventional arrhythmia and SCD genes exhibited incomplete penetrance and accounted for only a small fraction of marked electrocardiographic interval prolongation.
    Type of Medium: Online Resource
    ISSN: 2574-8300
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2021
    detail.hit.zdb_id: 2927603-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Circulation, Ovid Technologies (Wolters Kluwer Health), Vol. 142, No. Suppl_3 ( 2020-11-17)
    Abstract: Introduction: Electrocardiogram (ECG) intervals are quantitative and heritable endophenotypes for arrhythmias and sudden cardiac death (SCD). Studying rare sequence variation related to ECG intervals may help identify the genetic underpinnings of cardiac conduction and SCD. Methods: Using a discovery sample of 29,000 individuals with whole-genome sequences from TOPMed and a replication sample of about 100,000 individuals with whole-exome sequence data from the UK Biobank and MyCode, we examined associations between low-frequency (MAF 〈 1%) and rare (MAF 〈 0.1%) coding variants with 5 routinely ascertained ECG intervals (RR, P-wave, PR, QRS, and QTc intervals). We further assessed pathogenic variants in identified genes using ClinVar. Results: In low-frequency single variant analysis, we observed associations for PR interval in PAM ( P =2x10 -7 ) and MFGE8 ( P =5x10 -8 ). In gene-based tests, we identified rare coding variation associated with marked effects in established SCD genes KCNQ1, KCNH2, SCN5A and KCNE1 . For example, loss-of-function or pathogenic variants in KCNQ1 and KCNH2 were carried in 0.2% of individuals, were associated with 29 ms longer QTc intervals ( P =2x10 -82 ) and conferred up to 23-fold increased odds of marked QTc prolongation ( P =4x10 -25 ). Nevertheless, over 75% of carriers had normal QTc intervals. Similarly, loss-of-function or pathogenic variants in SCN5A , carried by 0.1% of individuals, conferred marked PR prolongation (31 ms), yet less than 30% of carriers had first-degree atrioventricular block. Discussion: This study demonstrates the value of studying ECGs in large sequenced biobanks for identifying rare variants predisposing to cardiac arrhythmias. Results define the frequency of pathogenic variation in SCD genes in the population and document incomplete penetrance of such variation. Our findings may serve as a benchmark for future population-based analyses aimed at discovering clinically actionable variants and genes.
    Type of Medium: Online Resource
    ISSN: 0009-7322 , 1524-4539
    Language: English
    Publisher: Ovid Technologies (Wolters Kluwer Health)
    Publication Date: 2020
    detail.hit.zdb_id: 1466401-X
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...